0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 QDP
↳7 QDPOrderProof (⇔)
↳8 QDP
↳9 PisEmptyProof (⇔)
↳10 TRUE
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)
PERFECTP(s(x)) → F(x, s(0), s(x), s(x))
F(s(x), 0, z, u) → F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) → F(s(x), minus(y, x), z, u)
F(s(x), s(y), z, u) → F(x, u, z, u)
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)
F(s(x), s(y), z, u) → F(x, u, z, u)
F(s(x), 0, z, u) → F(x, u, minus(z, s(x)), u)
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(s(x), s(y), z, u) → F(x, u, z, u)
F(s(x), 0, z, u) → F(x, u, minus(z, s(x)), u)
[s1, f1] > [F2, 0, minus, false, true, if2, le1]
F2: [1,2]
s1: [1]
0: []
minus: []
false: []
f1: [1]
true: []
if2: [1,2]
le1: [1]
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)