(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) → MINUS(x, y)
MINUS(minus(x, y), z) → MINUS(x, plus(y, z))
MINUS(minus(x, y), z) → PLUS(y, z)
PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
PLUS(s(x), s(y)) → IF(gt(x, y), x, y)
PLUS(s(x), s(y)) → GT(x, y)
PLUS(s(x), s(y)) → IF(not(gt(x, y)), id(x), id(y))
PLUS(s(x), s(y)) → NOT(gt(x, y))
PLUS(s(x), s(y)) → ID(x)
PLUS(s(x), s(y)) → ID(y)
PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
PLUS(s(x), x) → IF(gt(x, x), id(x), id(x))
PLUS(s(x), x) → GT(x, x)
PLUS(s(x), x) → ID(x)
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
PLUS(id(x), s(y)) → IF(gt(s(y), y), y, s(y))
PLUS(id(x), s(y)) → GT(s(y), y)
NOT(x) → IF(x, false, true)
GT(s(x), s(y)) → GT(x, y)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 14 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GT(s(x), s(y)) → GT(x, y)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GT(s(x), s(y)) → GT(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[GT2, s1]

Status:
s1: [1]
GT2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(minus(x, y), z) → MINUS(x, plus(y, z))
MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(s(x), s(y)) → MINUS(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x1)
minus(x1, x2)  =  x1
plus(x1, x2)  =  x2
s(x1)  =  s(x1)
gt(x1, x2)  =  gt
zero  =  zero
false  =  false
if(x1, x2, x3)  =  if
not(x1)  =  not
id(x1)  =  x1
true  =  true

Recursive path order with status [RPO].
Quasi-Precedence:
s1 > gt
s1 > not > if
[zero, false]

Status:
zero: multiset
gt: multiset
if: multiset
true: multiset
not: multiset
false: multiset
s1: multiset
MINUS1: multiset


The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(minus(x, y), z) → MINUS(x, plus(y, z))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(minus(x, y), z) → MINUS(x, plus(y, z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x1)
minus(x1, x2)  =  minus(x1, x2)
plus(x1, x2)  =  plus
gt(x1, x2)  =  gt(x1, x2)
s(x1)  =  s(x1)
zero  =  zero
false  =  false
if(x1, x2, x3)  =  x1
not(x1)  =  not
id(x1)  =  id(x1)
true  =  true

Recursive path order with status [RPO].
Quasi-Precedence:
[minus2, plus, s1, id1] > MINUS1
[gt2, true] > false
zero > false

Status:
zero: multiset
minus2: multiset
plus: multiset
true: multiset
not: []
false: multiset
MINUS1: multiset
s1: [1]
gt2: [2,1]
id1: multiset


The following usable rules [FROCOS05] were oriented: none

(15) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(17) TRUE

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUOT(x1, x2)  =  QUOT(x1, x2)
s(x1)  =  s(x1)
minus(x1, x2)  =  minus(x1)
gt(x1, x2)  =  gt(x1)
zero  =  zero
false  =  false
0  =  0
plus(x1, x2)  =  plus
if(x1, x2, x3)  =  if(x1, x3)
not(x1)  =  not
id(x1)  =  id(x1)
true  =  true

Recursive path order with status [RPO].
Quasi-Precedence:
QUOT2 > s1 > minus1
[gt1, plus] > not > [zero, false, true]
[gt1, plus] > not > if2
[gt1, plus] > id1 > s1 > minus1

Status:
if2: [1,2]
QUOT2: [2,1]
plus: multiset
true: multiset
not: multiset
0: multiset
gt1: multiset
zero: multiset
minus1: multiset
false: multiset
s1: multiset
id1: multiset


The following usable rules [FROCOS05] were oriented:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
minus(minus(x, y), z) → minus(x, plus(y, z))

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE