(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l), k) → APP(l, k)
SUM(cons(x, cons(y, l))) → SUM(cons(plus(x, y), l))
SUM(cons(x, cons(y, l))) → PLUS(x, y)
SUM(app(l, cons(x, cons(y, k)))) → SUM(app(l, sum(cons(x, cons(y, k)))))
SUM(app(l, cons(x, cons(y, k)))) → APP(l, sum(cons(x, cons(y, k))))
SUM(app(l, cons(x, cons(y, k)))) → SUM(cons(x, cons(y, k)))
SUM(plus(cons(0, x), cons(y, l))) → PRED(sum(cons(s(x), cons(y, l))))
SUM(plus(cons(0, x), cons(y, l))) → SUM(cons(s(x), cons(y, l)))
PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
PLUS(s(x), s(y)) → IF(gt(x, y), x, y)
PLUS(s(x), s(y)) → GT(x, y)
PLUS(s(x), s(y)) → IF(not(gt(x, y)), id(x), id(y))
PLUS(s(x), s(y)) → NOT(gt(x, y))
PLUS(s(x), s(y)) → ID(x)
PLUS(s(x), s(y)) → ID(y)
PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
PLUS(s(x), x) → IF(gt(x, x), id(x), id(x))
PLUS(s(x), x) → GT(x, x)
PLUS(s(x), x) → ID(x)
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
PLUS(id(x), s(y)) → IF(gt(s(y), y), y, s(y))
PLUS(id(x), s(y)) → GT(s(y), y)
NOT(x) → IF(x, false, true)
GT(s(x), s(y)) → GT(x, y)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 17 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GT(s(x), s(y)) → GT(x, y)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l), k) → APP(l, k)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(cons(x, l), k) → APP(l, k)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
cons(x1, x2)  =  cons(x2)
app(x1, x2)  =  app(x1, x2)
nil  =  nil
sum(x1)  =  sum
plus(x1, x2)  =  x2
0  =  0
pred(x1)  =  pred
s(x1)  =  s
if(x1, x2, x3)  =  if(x2, x3)
gt(x1, x2)  =  gt
not(x1)  =  not
id(x1)  =  id(x1)
zero  =  zero
true  =  true
false  =  false

Recursive Path Order [RPO].
Precedence:
app2 > sum > pred > cons1 > APP1 > s
app2 > sum > pred > cons1 > nil > s
0 > s
gt > true > s
gt > false > s
not > if2 > s
not > true > s
not > false > s
id1 > s
zero > true > s

The following usable rules [FROCOS05] were oriented:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(x, cons(y, l))) → SUM(cons(plus(x, y), l))

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(cons(x, cons(y, l))) → SUM(cons(plus(x, y), l))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  SUM(x1)
cons(x1, x2)  =  cons(x2)
plus(x1, x2)  =  plus(x2)
app(x1, x2)  =  app(x1, x2)
nil  =  nil
sum(x1)  =  x1
0  =  0
pred(x1)  =  x1
s(x1)  =  s
if(x1, x2, x3)  =  if(x2, x3)
gt(x1, x2)  =  gt
not(x1)  =  not
id(x1)  =  id(x1)
zero  =  zero
true  =  true
false  =  false

Recursive Path Order [RPO].
Precedence:
SUM1 > plus1 > cons1 > s
SUM1 > plus1 > id1 > s
app2 > cons1 > s
nil > cons1 > s
0 > s
gt > true > s
gt > false > s
not > if2 > s
not > true > s
not > false > s
zero > s

The following usable rules [FROCOS05] were oriented:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(app(l, cons(x, cons(y, k)))) → SUM(app(l, sum(cons(x, cons(y, k)))))

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.