0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, 0) → quotZeroErro
quot(x, s(y)) → quotIter(x, s(y), 0, 0, 0)
quotIter(x, s(y), z, u, v) → if(le(x, z), x, s(y), z, u, v)
if(true, x, y, z, u, v) → v
if(false, x, y, z, u, v) → if2(le(y, s(u)), x, y, s(z), s(u), v)
if2(false, x, y, z, u, v) → quotIter(x, y, z, u, v)
if2(true, x, y, z, u, v) → quotIter(x, y, z, 0, s(v))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, 0) → quotZeroErro
quot(x, s(y)) → quotIter(x, s(y), 0, 0, 0)
quotIter(x, s(y), z, u, v) → if(le(x, z), x, s(y), z, u, v)
if(true, x, y, z, u, v) → v
if(false, x, y, z, u, v) → if2(le(y, s(u)), x, y, s(z), s(u), v)
if2(false, x, y, z, u, v) → quotIter(x, y, z, u, v)
if2(true, x, y, z, u, v) → quotIter(x, y, z, 0, s(v))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, 0)
quot(x0, s(x1))
quotIter(x0, s(x1), x2, x3, x4)
if(true, x0, x1, x2, x3, x4)
if(false, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3, x4)
LE(s(x), s(y)) → LE(x, y)
QUOT(x, s(y)) → QUOTITER(x, s(y), 0, 0, 0)
QUOTITER(x, s(y), z, u, v) → IF(le(x, z), x, s(y), z, u, v)
QUOTITER(x, s(y), z, u, v) → LE(x, z)
IF(false, x, y, z, u, v) → IF2(le(y, s(u)), x, y, s(z), s(u), v)
IF(false, x, y, z, u, v) → LE(y, s(u))
IF2(false, x, y, z, u, v) → QUOTITER(x, y, z, u, v)
IF2(true, x, y, z, u, v) → QUOTITER(x, y, z, 0, s(v))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, 0) → quotZeroErro
quot(x, s(y)) → quotIter(x, s(y), 0, 0, 0)
quotIter(x, s(y), z, u, v) → if(le(x, z), x, s(y), z, u, v)
if(true, x, y, z, u, v) → v
if(false, x, y, z, u, v) → if2(le(y, s(u)), x, y, s(z), s(u), v)
if2(false, x, y, z, u, v) → quotIter(x, y, z, u, v)
if2(true, x, y, z, u, v) → quotIter(x, y, z, 0, s(v))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, 0)
quot(x0, s(x1))
quotIter(x0, s(x1), x2, x3, x4)
if(true, x0, x1, x2, x3, x4)
if(false, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3, x4)
LE(s(x), s(y)) → LE(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, 0) → quotZeroErro
quot(x, s(y)) → quotIter(x, s(y), 0, 0, 0)
quotIter(x, s(y), z, u, v) → if(le(x, z), x, s(y), z, u, v)
if(true, x, y, z, u, v) → v
if(false, x, y, z, u, v) → if2(le(y, s(u)), x, y, s(z), s(u), v)
if2(false, x, y, z, u, v) → quotIter(x, y, z, u, v)
if2(true, x, y, z, u, v) → quotIter(x, y, z, 0, s(v))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, 0)
quot(x0, s(x1))
quotIter(x0, s(x1), x2, x3, x4)
if(true, x0, x1, x2, x3, x4)
if(false, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3, x4)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s(x), s(y)) → LE(x, y)
trivial
LE1: [1]
s1: multiset
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, 0) → quotZeroErro
quot(x, s(y)) → quotIter(x, s(y), 0, 0, 0)
quotIter(x, s(y), z, u, v) → if(le(x, z), x, s(y), z, u, v)
if(true, x, y, z, u, v) → v
if(false, x, y, z, u, v) → if2(le(y, s(u)), x, y, s(z), s(u), v)
if2(false, x, y, z, u, v) → quotIter(x, y, z, u, v)
if2(true, x, y, z, u, v) → quotIter(x, y, z, 0, s(v))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, 0)
quot(x0, s(x1))
quotIter(x0, s(x1), x2, x3, x4)
if(true, x0, x1, x2, x3, x4)
if(false, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3, x4)
QUOTITER(x, s(y), z, u, v) → IF(le(x, z), x, s(y), z, u, v)
IF(false, x, y, z, u, v) → IF2(le(y, s(u)), x, y, s(z), s(u), v)
IF2(false, x, y, z, u, v) → QUOTITER(x, y, z, u, v)
IF2(true, x, y, z, u, v) → QUOTITER(x, y, z, 0, s(v))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, 0) → quotZeroErro
quot(x, s(y)) → quotIter(x, s(y), 0, 0, 0)
quotIter(x, s(y), z, u, v) → if(le(x, z), x, s(y), z, u, v)
if(true, x, y, z, u, v) → v
if(false, x, y, z, u, v) → if2(le(y, s(u)), x, y, s(z), s(u), v)
if2(false, x, y, z, u, v) → quotIter(x, y, z, u, v)
if2(true, x, y, z, u, v) → quotIter(x, y, z, 0, s(v))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, 0)
quot(x0, s(x1))
quotIter(x0, s(x1), x2, x3, x4)
if(true, x0, x1, x2, x3, x4)
if(false, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3, x4)