(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(append, nil), ys) → ys
a(a(append, a(a(cons, x), xs)), ys) → a(a(cons, x), a(a(append, xs), ys))
a(a(filter, f), nil) → nil
a(a(filter, f), a(a(cons, x), xs)) → a(a(a(if, a(f, x)), x), a(a(filter, f), xs))
a(a(le, 0), y) → true
a(a(le, a(s, x)), 0) → false
a(a(le, a(s, x)), a(s, y)) → a(a(le, x), y)
a(a(a(if, true), x), xs) → a(a(cons, x), xs)
a(a(a(if, false), x), xs) → xs
a(a(not, f), b) → a(not2, a(f, b))
a(not2, true) → false
a(not2, false) → true
a(qs, nil) → nil
a(qs, a(a(cons, x), xs)) → a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs))))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(append, nil), ys) → ys
a(a(append, a(a(cons, x), xs)), ys) → a(a(cons, x), a(a(append, xs), ys))
a(a(filter, f), nil) → nil
a(a(filter, f), a(a(cons, x), xs)) → a(a(a(if, a(f, x)), x), a(a(filter, f), xs))
a(a(le, 0), y) → true
a(a(le, a(s, x)), 0) → false
a(a(le, a(s, x)), a(s, y)) → a(a(le, x), y)
a(a(a(if, true), x), xs) → a(a(cons, x), xs)
a(a(a(if, false), x), xs) → xs
a(a(not, f), b) → a(not2, a(f, b))
a(not2, true) → false
a(not2, false) → true
a(qs, nil) → nil
a(qs, a(a(cons, x), xs)) → a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs))))

The set Q consists of the following terms:

a(a(append, nil), x0)
a(a(append, a(a(cons, x0), x1)), x2)
a(a(filter, x0), nil)
a(a(filter, x0), a(a(cons, x1), x2))
a(a(le, 0), x0)
a(a(le, a(s, x0)), 0)
a(a(le, a(s, x0)), a(s, x1))
a(a(a(if, true), x0), x1)
a(a(a(if, false), x0), x1)
a(a(not, x0), x1)
a(not2, true)
a(not2, false)
a(qs, nil)
a(qs, a(a(cons, x0), x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(a(append, a(a(cons, x), xs)), ys) → A(a(cons, x), a(a(append, xs), ys))
A(a(append, a(a(cons, x), xs)), ys) → A(a(append, xs), ys)
A(a(append, a(a(cons, x), xs)), ys) → A(append, xs)
A(a(filter, f), a(a(cons, x), xs)) → A(a(a(if, a(f, x)), x), a(a(filter, f), xs))
A(a(filter, f), a(a(cons, x), xs)) → A(a(if, a(f, x)), x)
A(a(filter, f), a(a(cons, x), xs)) → A(if, a(f, x))
A(a(filter, f), a(a(cons, x), xs)) → A(f, x)
A(a(filter, f), a(a(cons, x), xs)) → A(a(filter, f), xs)
A(a(le, a(s, x)), a(s, y)) → A(a(le, x), y)
A(a(le, a(s, x)), a(s, y)) → A(le, x)
A(a(a(if, true), x), xs) → A(a(cons, x), xs)
A(a(a(if, true), x), xs) → A(cons, x)
A(a(not, f), b) → A(not2, a(f, b))
A(a(not, f), b) → A(f, b)
A(qs, a(a(cons, x), xs)) → A(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs))))
A(qs, a(a(cons, x), xs)) → A(append, a(qs, a(a(filter, a(le, x)), xs)))
A(qs, a(a(cons, x), xs)) → A(qs, a(a(filter, a(le, x)), xs))
A(qs, a(a(cons, x), xs)) → A(a(filter, a(le, x)), xs)
A(qs, a(a(cons, x), xs)) → A(filter, a(le, x))
A(qs, a(a(cons, x), xs)) → A(le, x)
A(qs, a(a(cons, x), xs)) → A(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs)))
A(qs, a(a(cons, x), xs)) → A(qs, a(a(filter, a(not, a(le, x))), xs))
A(qs, a(a(cons, x), xs)) → A(a(filter, a(not, a(le, x))), xs)
A(qs, a(a(cons, x), xs)) → A(filter, a(not, a(le, x)))
A(qs, a(a(cons, x), xs)) → A(not, a(le, x))

The TRS R consists of the following rules:

a(a(append, nil), ys) → ys
a(a(append, a(a(cons, x), xs)), ys) → a(a(cons, x), a(a(append, xs), ys))
a(a(filter, f), nil) → nil
a(a(filter, f), a(a(cons, x), xs)) → a(a(a(if, a(f, x)), x), a(a(filter, f), xs))
a(a(le, 0), y) → true
a(a(le, a(s, x)), 0) → false
a(a(le, a(s, x)), a(s, y)) → a(a(le, x), y)
a(a(a(if, true), x), xs) → a(a(cons, x), xs)
a(a(a(if, false), x), xs) → xs
a(a(not, f), b) → a(not2, a(f, b))
a(not2, true) → false
a(not2, false) → true
a(qs, nil) → nil
a(qs, a(a(cons, x), xs)) → a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs))))

The set Q consists of the following terms:

a(a(append, nil), x0)
a(a(append, a(a(cons, x0), x1)), x2)
a(a(filter, x0), nil)
a(a(filter, x0), a(a(cons, x1), x2))
a(a(le, 0), x0)
a(a(le, a(s, x0)), 0)
a(a(le, a(s, x0)), a(s, x1))
a(a(a(if, true), x0), x1)
a(a(a(if, false), x0), x1)
a(a(not, x0), x1)
a(not2, true)
a(not2, false)
a(qs, nil)
a(qs, a(a(cons, x0), x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 16 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(a(le, a(s, x)), a(s, y)) → A(a(le, x), y)

The TRS R consists of the following rules:

a(a(append, nil), ys) → ys
a(a(append, a(a(cons, x), xs)), ys) → a(a(cons, x), a(a(append, xs), ys))
a(a(filter, f), nil) → nil
a(a(filter, f), a(a(cons, x), xs)) → a(a(a(if, a(f, x)), x), a(a(filter, f), xs))
a(a(le, 0), y) → true
a(a(le, a(s, x)), 0) → false
a(a(le, a(s, x)), a(s, y)) → a(a(le, x), y)
a(a(a(if, true), x), xs) → a(a(cons, x), xs)
a(a(a(if, false), x), xs) → xs
a(a(not, f), b) → a(not2, a(f, b))
a(not2, true) → false
a(not2, false) → true
a(qs, nil) → nil
a(qs, a(a(cons, x), xs)) → a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs))))

The set Q consists of the following terms:

a(a(append, nil), x0)
a(a(append, a(a(cons, x0), x1)), x2)
a(a(filter, x0), nil)
a(a(filter, x0), a(a(cons, x1), x2))
a(a(le, 0), x0)
a(a(le, a(s, x0)), 0)
a(a(le, a(s, x0)), a(s, x1))
a(a(a(if, true), x0), x1)
a(a(a(if, false), x0), x1)
a(a(not, x0), x1)
a(not2, true)
a(not2, false)
a(qs, nil)
a(qs, a(a(cons, x0), x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

le1(s(x), s(y)) → le1(x, y)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


A(a(le, a(s, x)), a(s, y)) → A(a(le, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
le1(x1, x2)  =  le1(x2)
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
le11: [1]
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a(a(append, nil), ys) → ys
a(a(append, a(a(cons, x), xs)), ys) → a(a(cons, x), a(a(append, xs), ys))
a(a(filter, f), nil) → nil
a(a(filter, f), a(a(cons, x), xs)) → a(a(a(if, a(f, x)), x), a(a(filter, f), xs))
a(a(le, 0), y) → true
a(a(le, a(s, x)), 0) → false
a(a(le, a(s, x)), a(s, y)) → a(a(le, x), y)
a(a(a(if, true), x), xs) → a(a(cons, x), xs)
a(a(a(if, false), x), xs) → xs
a(a(not, f), b) → a(not2, a(f, b))
a(not2, true) → false
a(not2, false) → true
a(qs, nil) → nil
a(qs, a(a(cons, x), xs)) → a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs))))

The set Q consists of the following terms:

a(a(append, nil), x0)
a(a(append, a(a(cons, x0), x1)), x2)
a(a(filter, x0), nil)
a(a(filter, x0), a(a(cons, x1), x2))
a(a(le, 0), x0)
a(a(le, a(s, x0)), 0)
a(a(le, a(s, x0)), a(s, x1))
a(a(a(if, true), x0), x1)
a(a(a(if, false), x0), x1)
a(a(not, x0), x1)
a(not2, true)
a(not2, false)
a(qs, nil)
a(qs, a(a(cons, x0), x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(a(append, a(a(cons, x), xs)), ys) → A(a(append, xs), ys)

The TRS R consists of the following rules:

a(a(append, nil), ys) → ys
a(a(append, a(a(cons, x), xs)), ys) → a(a(cons, x), a(a(append, xs), ys))
a(a(filter, f), nil) → nil
a(a(filter, f), a(a(cons, x), xs)) → a(a(a(if, a(f, x)), x), a(a(filter, f), xs))
a(a(le, 0), y) → true
a(a(le, a(s, x)), 0) → false
a(a(le, a(s, x)), a(s, y)) → a(a(le, x), y)
a(a(a(if, true), x), xs) → a(a(cons, x), xs)
a(a(a(if, false), x), xs) → xs
a(a(not, f), b) → a(not2, a(f, b))
a(not2, true) → false
a(not2, false) → true
a(qs, nil) → nil
a(qs, a(a(cons, x), xs)) → a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs))))

The set Q consists of the following terms:

a(a(append, nil), x0)
a(a(append, a(a(cons, x0), x1)), x2)
a(a(filter, x0), nil)
a(a(filter, x0), a(a(cons, x1), x2))
a(a(le, 0), x0)
a(a(le, a(s, x0)), 0)
a(a(le, a(s, x0)), a(s, x1))
a(a(a(if, true), x0), x1)
a(a(a(if, false), x0), x1)
a(a(not, x0), x1)
a(not2, true)
a(not2, false)
a(qs, nil)
a(qs, a(a(cons, x0), x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

append1(cons(x, xs), ys) → append1(xs, ys)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


A(a(append, a(a(cons, x), xs)), ys) → A(a(append, xs), ys)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
append1(x1, x2)  =  append1(x1, x2)
cons(x1, x2)  =  cons(x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[append12, cons1]

Status:
append12: [2,1]
cons1: [1]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a(a(append, nil), ys) → ys
a(a(append, a(a(cons, x), xs)), ys) → a(a(cons, x), a(a(append, xs), ys))
a(a(filter, f), nil) → nil
a(a(filter, f), a(a(cons, x), xs)) → a(a(a(if, a(f, x)), x), a(a(filter, f), xs))
a(a(le, 0), y) → true
a(a(le, a(s, x)), 0) → false
a(a(le, a(s, x)), a(s, y)) → a(a(le, x), y)
a(a(a(if, true), x), xs) → a(a(cons, x), xs)
a(a(a(if, false), x), xs) → xs
a(a(not, f), b) → a(not2, a(f, b))
a(not2, true) → false
a(not2, false) → true
a(qs, nil) → nil
a(qs, a(a(cons, x), xs)) → a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs))))

The set Q consists of the following terms:

a(a(append, nil), x0)
a(a(append, a(a(cons, x0), x1)), x2)
a(a(filter, x0), nil)
a(a(filter, x0), a(a(cons, x1), x2))
a(a(le, 0), x0)
a(a(le, a(s, x0)), 0)
a(a(le, a(s, x0)), a(s, x1))
a(a(a(if, true), x0), x1)
a(a(a(if, false), x0), x1)
a(a(not, x0), x1)
a(not2, true)
a(not2, false)
a(qs, nil)
a(qs, a(a(cons, x0), x1))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(a(filter, f), a(a(cons, x), xs)) → A(a(filter, f), xs)
A(a(filter, f), a(a(cons, x), xs)) → A(f, x)
A(a(not, f), b) → A(f, b)
A(qs, a(a(cons, x), xs)) → A(qs, a(a(filter, a(le, x)), xs))
A(qs, a(a(cons, x), xs)) → A(a(filter, a(le, x)), xs)
A(qs, a(a(cons, x), xs)) → A(qs, a(a(filter, a(not, a(le, x))), xs))
A(qs, a(a(cons, x), xs)) → A(a(filter, a(not, a(le, x))), xs)

The TRS R consists of the following rules:

a(a(append, nil), ys) → ys
a(a(append, a(a(cons, x), xs)), ys) → a(a(cons, x), a(a(append, xs), ys))
a(a(filter, f), nil) → nil
a(a(filter, f), a(a(cons, x), xs)) → a(a(a(if, a(f, x)), x), a(a(filter, f), xs))
a(a(le, 0), y) → true
a(a(le, a(s, x)), 0) → false
a(a(le, a(s, x)), a(s, y)) → a(a(le, x), y)
a(a(a(if, true), x), xs) → a(a(cons, x), xs)
a(a(a(if, false), x), xs) → xs
a(a(not, f), b) → a(not2, a(f, b))
a(not2, true) → false
a(not2, false) → true
a(qs, nil) → nil
a(qs, a(a(cons, x), xs)) → a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs))))

The set Q consists of the following terms:

a(a(append, nil), x0)
a(a(append, a(a(cons, x0), x1)), x2)
a(a(filter, x0), nil)
a(a(filter, x0), a(a(cons, x1), x2))
a(a(le, 0), x0)
a(a(le, a(s, x0)), 0)
a(a(le, a(s, x0)), a(s, x1))
a(a(a(if, true), x0), x1)
a(a(a(if, false), x0), x1)
a(a(not, x0), x1)
a(not2, true)
a(not2, false)
a(qs, nil)
a(qs, a(a(cons, x0), x1))

We have to consider all minimal (P,Q,R)-chains.