0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
LE(s(x), s(y)) → LE(x, y)
MOD(x, s(y)) → MODITER(x, s(y), 0, 0)
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
MODITER(x, s(y), z, u) → LE(x, z)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF(false, x, y, z, u) → LE(y, s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
LE(s(x), s(y)) → LE(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s(x), s(y)) → LE(x, y)
trivial
LE1: [1]
s1: multiset
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)