(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
log(x, 0) → baseError
log(x, s(0)) → baseError
log(0, s(s(b))) → logZeroError
log(s(x), s(s(b))) → loop(s(x), s(s(b)), s(0), 0)
loop(x, s(s(b)), s(y), z) → if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z) → z
if(false, x, b, y, z) → loop(x, b, times(b, y), s(z))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
log(x, 0) → baseError
log(x, s(0)) → baseError
log(0, s(s(b))) → logZeroError
log(s(x), s(s(b))) → loop(s(x), s(s(b)), s(0), 0)
loop(x, s(s(b)), s(y), z) → if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z) → z
if(false, x, b, y, z) → loop(x, b, times(b, y), s(z))
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
log(x0, 0)
log(x0, s(0))
log(0, s(s(x0)))
log(s(x0), s(s(x1)))
loop(x0, s(s(x1)), s(x2), x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
PLUS(s(x), y) → PLUS(x, y)
TIMES(s(x), y) → PLUS(y, times(x, y))
TIMES(s(x), y) → TIMES(x, y)
LOG(s(x), s(s(b))) → LOOP(s(x), s(s(b)), s(0), 0)
LOOP(x, s(s(b)), s(y), z) → IF(le(x, s(y)), x, s(s(b)), s(y), z)
LOOP(x, s(s(b)), s(y), z) → LE(x, s(y))
IF(false, x, b, y, z) → LOOP(x, b, times(b, y), s(z))
IF(false, x, b, y, z) → TIMES(b, y)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
log(x, 0) → baseError
log(x, s(0)) → baseError
log(0, s(s(b))) → logZeroError
log(s(x), s(s(b))) → loop(s(x), s(s(b)), s(0), 0)
loop(x, s(s(b)), s(y), z) → if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z) → z
if(false, x, b, y, z) → loop(x, b, times(b, y), s(z))
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
log(x0, 0)
log(x0, s(0))
log(0, s(s(x0)))
log(s(x0), s(s(x1)))
loop(x0, s(s(x1)), s(x2), x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
log(x, 0) → baseError
log(x, s(0)) → baseError
log(0, s(s(b))) → logZeroError
log(s(x), s(s(b))) → loop(s(x), s(s(b)), s(0), 0)
loop(x, s(s(b)), s(y), z) → if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z) → z
if(false, x, b, y, z) → loop(x, b, times(b, y), s(z))
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
log(x0, 0)
log(x0, s(0))
log(0, s(s(x0)))
log(s(x0), s(s(x1)))
loop(x0, s(s(x1)), s(x2), x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(s(x), y) → TIMES(x, y)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
log(x, 0) → baseError
log(x, s(0)) → baseError
log(0, s(s(b))) → logZeroError
log(s(x), s(s(b))) → loop(s(x), s(s(b)), s(0), 0)
loop(x, s(s(b)), s(y), z) → if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z) → z
if(false, x, b, y, z) → loop(x, b, times(b, y), s(z))
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
log(x0, 0)
log(x0, s(0))
log(0, s(s(x0)))
log(s(x0), s(s(x1)))
loop(x0, s(s(x1)), s(x2), x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
log(x, 0) → baseError
log(x, s(0)) → baseError
log(0, s(s(b))) → logZeroError
log(s(x), s(s(b))) → loop(s(x), s(s(b)), s(0), 0)
loop(x, s(s(b)), s(y), z) → if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z) → z
if(false, x, b, y, z) → loop(x, b, times(b, y), s(z))
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
log(x0, 0)
log(x0, s(0))
log(0, s(s(x0)))
log(s(x0), s(s(x1)))
loop(x0, s(s(x1)), s(x2), x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOOP(x, s(s(b)), s(y), z) → IF(le(x, s(y)), x, s(s(b)), s(y), z)
IF(false, x, b, y, z) → LOOP(x, b, times(b, y), s(z))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
log(x, 0) → baseError
log(x, s(0)) → baseError
log(0, s(s(b))) → logZeroError
log(s(x), s(s(b))) → loop(s(x), s(s(b)), s(0), 0)
loop(x, s(s(b)), s(y), z) → if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z) → z
if(false, x, b, y, z) → loop(x, b, times(b, y), s(z))
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
log(x0, 0)
log(x0, s(0))
log(0, s(s(x0)))
log(s(x0), s(s(x1)))
loop(x0, s(s(x1)), s(x2), x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.