(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
int(x, y) → if(le(x, y), x, y)
if(true, x, y) → cons(x, int(s(x), y))
if(false, x, y) → nil

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
int(x, y) → if(le(x, y), x, y)
if(true, x, y) → cons(x, int(s(x), y))
if(false, x, y) → nil

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
int(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)
INT(x, y) → IF(le(x, y), x, y)
INT(x, y) → LE(x, y)
IF(true, x, y) → INT(s(x), y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
int(x, y) → if(le(x, y), x, y)
if(true, x, y) → cons(x, int(s(x), y))
if(false, x, y) → nil

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
int(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
int(x, y) → if(le(x, y), x, y)
if(true, x, y) → cons(x, int(s(x), y))
if(false, x, y) → nil

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
int(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LE(x1, x2)  =  LE(x2)
s(x1)  =  s(x1)
le(x1, x2)  =  le(x1)
0  =  0
true  =  true
false  =  false
int(x1, x2)  =  int(x1, x2)
if(x1, x2, x3)  =  if(x1, x2, x3)
cons(x1, x2)  =  x1
nil  =  nil

Recursive Path Order [RPO].
Precedence:
LE1 > false
0 > true > s1 > false
0 > true > int2 > le1 > false
0 > true > int2 > if3 > nil > false

The following usable rules [FROCOS05] were oriented:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
int(x, y) → if(le(x, y), x, y)
if(true, x, y) → cons(x, int(s(x), y))
if(false, x, y) → nil

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
int(x, y) → if(le(x, y), x, y)
if(true, x, y) → cons(x, int(s(x), y))
if(false, x, y) → nil

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
int(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT(x, y) → IF(le(x, y), x, y)
IF(true, x, y) → INT(s(x), y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
int(x, y) → if(le(x, y), x, y)
if(true, x, y) → cons(x, int(s(x), y))
if(false, x, y) → nil

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
int(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.