0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 PisEmptyProof (⇔)
↳9 TRUE
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 PisEmptyProof (⇔)
↳14 TRUE
↳15 QDP
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
quot(x, y) → div(x, y, 0)
div(x, y, z) → if(ge(y, s(0)), ge(x, y), x, y, z)
if(false, b, x, y, z) → div_by_zero
if(true, false, x, y, z) → z
if(true, true, x, y, z) → div(minus(x, y), y, id_inc(z))
GE(s(x), s(y)) → GE(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
QUOT(x, y) → DIV(x, y, 0)
DIV(x, y, z) → IF(ge(y, s(0)), ge(x, y), x, y, z)
DIV(x, y, z) → GE(y, s(0))
DIV(x, y, z) → GE(x, y)
IF(true, true, x, y, z) → DIV(minus(x, y), y, id_inc(z))
IF(true, true, x, y, z) → MINUS(x, y)
IF(true, true, x, y, z) → ID_INC(z)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
quot(x, y) → div(x, y, 0)
div(x, y, z) → if(ge(y, s(0)), ge(x, y), x, y, z)
if(false, b, x, y, z) → div_by_zero
if(true, false, x, y, z) → z
if(true, true, x, y, z) → div(minus(x, y), y, id_inc(z))
MINUS(s(x), s(y)) → MINUS(x, y)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
quot(x, y) → div(x, y, 0)
div(x, y, z) → if(ge(y, s(0)), ge(x, y), x, y, z)
if(false, b, x, y, z) → div_by_zero
if(true, false, x, y, z) → z
if(true, true, x, y, z) → div(minus(x, y), y, id_inc(z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s(x), s(y)) → MINUS(x, y)
[MINUS1, s1]
s1: [1]
MINUS1: multiset
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
quot(x, y) → div(x, y, 0)
div(x, y, z) → if(ge(y, s(0)), ge(x, y), x, y, z)
if(false, b, x, y, z) → div_by_zero
if(true, false, x, y, z) → z
if(true, true, x, y, z) → div(minus(x, y), y, id_inc(z))
GE(s(x), s(y)) → GE(x, y)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
quot(x, y) → div(x, y, 0)
div(x, y, z) → if(ge(y, s(0)), ge(x, y), x, y, z)
if(false, b, x, y, z) → div_by_zero
if(true, false, x, y, z) → z
if(true, true, x, y, z) → div(minus(x, y), y, id_inc(z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GE(s(x), s(y)) → GE(x, y)
[GE1, s1]
s1: [1]
GE1: multiset
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
quot(x, y) → div(x, y, 0)
div(x, y, z) → if(ge(y, s(0)), ge(x, y), x, y, z)
if(false, b, x, y, z) → div_by_zero
if(true, false, x, y, z) → z
if(true, true, x, y, z) → div(minus(x, y), y, id_inc(z))
DIV(x, y, z) → IF(ge(y, s(0)), ge(x, y), x, y, z)
IF(true, true, x, y, z) → DIV(minus(x, y), y, id_inc(z))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
quot(x, y) → div(x, y, 0)
div(x, y, z) → if(ge(y, s(0)), ge(x, y), x, y, z)
if(false, b, x, y, z) → div_by_zero
if(true, false, x, y, z) → z
if(true, true, x, y, z) → div(minus(x, y), y, id_inc(z))