(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
fac(x) → loop(x, s(0), s(0))
loop(x, c, y) → if(lt(x, c), x, c, y)
if(false, x, c, y) → loop(x, s(c), times(y, s(c)))
if(true, x, c, y) → y
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
fac(x) → loop(x, s(0), s(0))
loop(x, c, y) → if(lt(x, c), x, c, y)
if(false, x, c, y) → loop(x, s(c), times(y, s(c)))
if(true, x, c, y) → y
The set Q consists of the following terms:
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
times(0, x0)
times(s(x0), x1)
plus(0, x0)
plus(s(x0), x1)
fac(x0)
loop(x0, x1, x2)
if(false, x0, x1, x2)
if(true, x0, x1, x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(x), s(y)) → LT(x, y)
TIMES(s(x), y) → PLUS(y, times(x, y))
TIMES(s(x), y) → TIMES(x, y)
PLUS(s(x), y) → PLUS(x, y)
FAC(x) → LOOP(x, s(0), s(0))
LOOP(x, c, y) → IF(lt(x, c), x, c, y)
LOOP(x, c, y) → LT(x, c)
IF(false, x, c, y) → LOOP(x, s(c), times(y, s(c)))
IF(false, x, c, y) → TIMES(y, s(c))
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
fac(x) → loop(x, s(0), s(0))
loop(x, c, y) → if(lt(x, c), x, c, y)
if(false, x, c, y) → loop(x, s(c), times(y, s(c)))
if(true, x, c, y) → y
The set Q consists of the following terms:
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
times(0, x0)
times(s(x0), x1)
plus(0, x0)
plus(s(x0), x1)
fac(x0)
loop(x0, x1, x2)
if(false, x0, x1, x2)
if(true, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
fac(x) → loop(x, s(0), s(0))
loop(x, c, y) → if(lt(x, c), x, c, y)
if(false, x, c, y) → loop(x, s(c), times(y, s(c)))
if(true, x, c, y) → y
The set Q consists of the following terms:
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
times(0, x0)
times(s(x0), x1)
plus(0, x0)
plus(s(x0), x1)
fac(x0)
loop(x0, x1, x2)
if(false, x0, x1, x2)
if(true, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(s(x), y) → TIMES(x, y)
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
fac(x) → loop(x, s(0), s(0))
loop(x, c, y) → if(lt(x, c), x, c, y)
if(false, x, c, y) → loop(x, s(c), times(y, s(c)))
if(true, x, c, y) → y
The set Q consists of the following terms:
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
times(0, x0)
times(s(x0), x1)
plus(0, x0)
plus(s(x0), x1)
fac(x0)
loop(x0, x1, x2)
if(false, x0, x1, x2)
if(true, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(x), s(y)) → LT(x, y)
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
fac(x) → loop(x, s(0), s(0))
loop(x, c, y) → if(lt(x, c), x, c, y)
if(false, x, c, y) → loop(x, s(c), times(y, s(c)))
if(true, x, c, y) → y
The set Q consists of the following terms:
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
times(0, x0)
times(s(x0), x1)
plus(0, x0)
plus(s(x0), x1)
fac(x0)
loop(x0, x1, x2)
if(false, x0, x1, x2)
if(true, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOOP(x, c, y) → IF(lt(x, c), x, c, y)
IF(false, x, c, y) → LOOP(x, s(c), times(y, s(c)))
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
fac(x) → loop(x, s(0), s(0))
loop(x, c, y) → if(lt(x, c), x, c, y)
if(false, x, c, y) → loop(x, s(c), times(y, s(c)))
if(true, x, c, y) → y
The set Q consists of the following terms:
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
times(0, x0)
times(s(x0), x1)
plus(0, x0)
plus(s(x0), x1)
fac(x0)
loop(x0, x1, x2)
if(false, x0, x1, x2)
if(true, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.