0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
digits → d(0)
d(x) → if(le(x, s(s(s(s(s(s(s(s(s(0)))))))))), x)
if(true, x) → cons(x, d(s(x)))
if(false, x) → nil
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
digits → d(0)
d(x) → if(le(x, s(s(s(s(s(s(s(s(s(0)))))))))), x)
if(true, x) → cons(x, d(s(x)))
if(false, x) → nil
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
digits
d(x0)
if(true, x0)
if(false, x0)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
DIGITS → D(0)
D(x) → IF(le(x, s(s(s(s(s(s(s(s(s(0)))))))))), x)
D(x) → LE(x, s(s(s(s(s(s(s(s(s(0))))))))))
IF(true, x) → D(s(x))
LE(s(x), s(y)) → LE(x, y)
digits → d(0)
d(x) → if(le(x, s(s(s(s(s(s(s(s(s(0)))))))))), x)
if(true, x) → cons(x, d(s(x)))
if(false, x) → nil
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
digits
d(x0)
if(true, x0)
if(false, x0)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
LE(s(x), s(y)) → LE(x, y)
digits → d(0)
d(x) → if(le(x, s(s(s(s(s(s(s(s(s(0)))))))))), x)
if(true, x) → cons(x, d(s(x)))
if(false, x) → nil
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
digits
d(x0)
if(true, x0)
if(false, x0)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s(x), s(y)) → LE(x, y)
trivial
LE1: [1]
s1: multiset
digits → d(0)
d(x) → if(le(x, s(s(s(s(s(s(s(s(s(0)))))))))), x)
if(true, x) → cons(x, d(s(x)))
if(false, x) → nil
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
digits
d(x0)
if(true, x0)
if(false, x0)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
IF(true, x) → D(s(x))
D(x) → IF(le(x, s(s(s(s(s(s(s(s(s(0)))))))))), x)
digits → d(0)
d(x) → if(le(x, s(s(s(s(s(s(s(s(s(0)))))))))), x)
if(true, x) → cons(x, d(s(x)))
if(false, x) → nil
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
digits
d(x0)
if(true, x0)
if(false, x0)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))