(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
TIMES(s(x), y) → PLUS(y, times(x, y))
TIMES(s(x), y) → TIMES(x, y)
EXP(x, s(y)) → TIMES(x, exp(x, y))
EXP(x, s(y)) → EXP(x, y)
GE(s(x), s(y)) → GE(x, y)
TOWER(x, y) → TOWERITER(0, x, y, s(0))
TOWERITER(c, x, y, z) → HELP(ge(c, x), c, x, y, z)
TOWERITER(c, x, y, z) → GE(c, x)
HELP(false, c, x, y, z) → TOWERITER(s(c), x, y, exp(y, z))
HELP(false, c, x, y, z) → EXP(y, z)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 5 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(s(x), y) → TIMES(x, y)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EXP(x, s(y)) → EXP(x, y)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HELP(false, c, x, y, z) → TOWERITER(s(c), x, y, exp(y, z))
TOWERITER(c, x, y, z) → HELP(ge(c, x), c, x, y, z)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.