(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(x, y) → HELP(x, y, 0)
HELP(x, y, c) → IF(lt(c, y), x, y, c)
HELP(x, y, c) → LT(c, y)
IF(true, x, y, c) → PLUS(x, help(x, y, s(c)))
IF(true, x, y, c) → HELP(x, y, s(c))
LT(s(x), s(y)) → LT(x, y)
PLUS(x, s(y)) → PLUS(x, y)
PLUS(s(x), y) → PLUS(x, y)
The TRS R consists of the following rules:
times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
PLUS(x, s(y)) → PLUS(x, y)
The TRS R consists of the following rules:
times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(x), s(y)) → LT(x, y)
The TRS R consists of the following rules:
times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, x, y, c) → HELP(x, y, s(c))
HELP(x, y, c) → IF(lt(c, y), x, y, c)
The TRS R consists of the following rules:
times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
We have to consider all minimal (P,Q,R)-chains.