(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0)
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0)
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0
The set Q consists of the following terms:
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
plus(x0, 0)
plus(x0, s(x1))
quot(x0, s(x1))
help(x0, s(x1), x2)
if(true, x0, s(x1), x2)
if(false, x0, s(x1), x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(x), s(y)) → LT(x, y)
PLUS(x, s(y)) → PLUS(x, y)
QUOT(x, s(y)) → HELP(x, s(y), 0)
HELP(x, s(y), c) → IF(lt(c, x), x, s(y), c)
HELP(x, s(y), c) → LT(c, x)
IF(true, x, s(y), c) → HELP(x, s(y), plus(c, s(y)))
IF(true, x, s(y), c) → PLUS(c, s(y))
The TRS R consists of the following rules:
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0)
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0
The set Q consists of the following terms:
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
plus(x0, 0)
plus(x0, s(x1))
quot(x0, s(x1))
help(x0, s(x1), x2)
if(true, x0, s(x1), x2)
if(false, x0, s(x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(x, s(y)) → PLUS(x, y)
The TRS R consists of the following rules:
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0)
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0
The set Q consists of the following terms:
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
plus(x0, 0)
plus(x0, s(x1))
quot(x0, s(x1))
help(x0, s(x1), x2)
if(true, x0, s(x1), x2)
if(false, x0, s(x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(x), s(y)) → LT(x, y)
The TRS R consists of the following rules:
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0)
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0
The set Q consists of the following terms:
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
plus(x0, 0)
plus(x0, s(x1))
quot(x0, s(x1))
help(x0, s(x1), x2)
if(true, x0, s(x1), x2)
if(false, x0, s(x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HELP(x, s(y), c) → IF(lt(c, x), x, s(y), c)
IF(true, x, s(y), c) → HELP(x, s(y), plus(c, s(y)))
The TRS R consists of the following rules:
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0)
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0
The set Q consists of the following terms:
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
plus(x0, 0)
plus(x0, s(x1))
quot(x0, s(x1))
help(x0, s(x1), x2)
if(true, x0, s(x1), x2)
if(false, x0, s(x1), x2)
We have to consider all minimal (P,Q,R)-chains.