(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, app(p, app(s, x))), app(p, app(s, y)))
APP(app(minus, app(s, x)), app(s, y)) → APP(minus, app(p, app(s, x)))
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, x))
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, y))
APP(app(div, app(s, x)), app(s, y)) → APP(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
APP(app(div, app(s, x)), app(s, y)) → APP(app(div, app(app(minus, x), app(id, y))), app(s, y))
APP(app(div, app(s, x)), app(s, y)) → APP(div, app(app(minus, x), app(id, y)))
APP(app(div, app(s, x)), app(s, y)) → APP(app(minus, x), app(id, y))
APP(app(div, app(s, x)), app(s, y)) → APP(minus, x)
APP(app(div, app(s, x)), app(s, y)) → APP(id, y)
APP(id, x) → APP(s, app(s, app(s, x)))
APP(id, x) → APP(s, app(s, x))
APP(id, x) → APP(s, x)
APP(id, app(p, x)) → APP(id, app(s, app(id, x)))
APP(id, app(p, x)) → APP(s, app(id, x))
APP(id, app(p, x)) → APP(id, x)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 15 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(id, app(p, x)) → APP(id, x)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

id1(p(x)) → id1(x)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP(id, app(p, x)) → APP(id, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
p1 > id11

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, app(p, app(s, x))), app(p, app(s, y)))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(div, app(s, x)), app(s, y)) → APP(app(div, app(app(minus, x), app(id, y))), app(s, y))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  x1
app(x1, x2)  =  app(x1, x2)
map  =  map
cons  =  cons

Recursive Path Order [RPO].
Precedence:
map > app2
cons > app2

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

map1(f, cons(x, xs)) → map1(f, xs)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
map1(x1, x2)  =  map1(x2)
cons(x1, x2)  =  cons(x1, x2)

Recursive Path Order [RPO].
Precedence:
cons2 > map11

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE