0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 PisEmptyProof (⇔)
↳9 TRUE
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 QDP
↳14 QDPOrderProof (⇔)
↳15 QDP
↳16 PisEmptyProof (⇔)
↳17 TRUE
↳18 QDP
↳19 QDPOrderProof (⇔)
↳20 QDP
↳21 DependencyGraphProof (⇔)
↳22 AND
↳23 QDP
↳24 QDPOrderProof (⇔)
↳25 QDP
↳26 DependencyGraphProof (⇔)
↳27 TRUE
↳28 QDP
↳29 QDPOrderProof (⇔)
↳30 QDP
↳31 PisEmptyProof (⇔)
↳32 TRUE
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
PLUS(s(x), y) → PLUS(x, y)
PLUS(s(x), y) → PLUS(p(s(x)), y)
PLUS(s(x), y) → P(s(x))
PLUS(x, s(y)) → PLUS(x, p(s(y)))
PLUS(x, s(y)) → P(s(y))
TIMES(s(x), y) → PLUS(y, times(x, y))
TIMES(s(x), y) → TIMES(x, y)
DIV(x, y) → QUOT(x, y, y)
QUOT(s(x), s(y), z) → QUOT(x, y, z)
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(div(x, y), z) → DIV(x, times(zero(y), z))
DIV(div(x, y), z) → TIMES(zero(y), z)
DIV(div(x, y), z) → ZERO(y)
EQ(s(x), s(y)) → EQ(x, y)
DIVIDES(y, x) → EQ(x, times(div(x, y), y))
DIVIDES(y, x) → TIMES(div(x, y), y)
DIVIDES(y, x) → DIV(x, y)
PRIME(s(s(x))) → PR(s(s(x)), s(x))
PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y))
PR(x, s(s(y))) → DIVIDES(s(s(y)), x)
IF(false, x, y) → PR(x, y)
ZERO(s(x)) → IF(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
ZERO(s(x)) → EQ(x, s(0))
ZERO(s(x)) → PLUS(zero(0), 0)
ZERO(s(x)) → ZERO(0)
ZERO(s(x)) → PLUS(0, zero(0))
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
EQ(s(x), s(y)) → EQ(x, y)
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ(s(x), s(y)) → EQ(x, y)
trivial
s1: [1]
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
PLUS(s(x), y) → PLUS(p(s(x)), y)
PLUS(s(x), y) → PLUS(x, y)
PLUS(x, s(y)) → PLUS(x, p(s(y)))
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(s(x), y) → PLUS(x, y)
PLUS2 > s1
PLUS2: [2,1]
s1: [1]
p(s(x)) → x
PLUS(s(x), y) → PLUS(p(s(x)), y)
PLUS(x, s(y)) → PLUS(x, p(s(y)))
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
TIMES(s(x), y) → TIMES(x, y)
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES(s(x), y) → TIMES(x, y)
s1 > TIMES2
TIMES2: [2,1]
s1: [1]
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
DIV(x, y) → QUOT(x, y, y)
QUOT(s(x), s(y), z) → QUOT(x, y, z)
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(div(x, y), z) → DIV(x, times(zero(y), z))
DIV(div(x, y), z) → ZERO(y)
ZERO(s(x)) → IF(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
IF(false, x, y) → PR(x, y)
PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y))
PR(x, s(s(y))) → DIVIDES(s(s(y)), x)
DIVIDES(y, x) → DIV(x, y)
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(s(x), s(y), z) → QUOT(x, y, z)
DIV(div(x, y), z) → DIV(x, times(zero(y), z))
DIV(div(x, y), z) → ZERO(y)
ZERO(s(x)) → IF(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
DIVIDES(y, x) → DIV(x, y)
div1 > ZERO > 0 > [eq1, false, if2] > [IF1, PR1, divides2, DIVIDES1] > [times, true]
div1 > ZERO > zero1 > [eq1, false, if2] > [IF1, PR1, divides2, DIVIDES1] > [times, true]
div1 > ZERO > plus1 > p1 > [times, true]
div1 > quot1 > [times, true]
pr > s1 > 0 > [eq1, false, if2] > [IF1, PR1, divides2, DIVIDES1] > [times, true]
pr > s1 > zero1 > [eq1, false, if2] > [IF1, PR1, divides2, DIVIDES1] > [times, true]
pr > s1 > plus1 > p1 > [times, true]
pr > s1 > quot1 > [times, true]
zero1: [1]
if2: [1,2]
ZERO: []
quot1: [1]
div1: [1]
true: []
IF1: [1]
p1: [1]
pr: []
0: []
eq1: [1]
DIVIDES1: [1]
PR1: [1]
plus1: [1]
times: []
false: []
s1: [1]
divides2: [2,1]
plus(x, 0) → x
DIV(x, y) → QUOT(x, y, y)
QUOT(x, 0, s(z)) → DIV(x, s(z))
IF(false, x, y) → PR(x, y)
PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y))
PR(x, s(s(y))) → DIVIDES(s(s(y)), x)
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y))
IF(false, x, y) → PR(x, y)
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y))
s1 > [PR2, IF2, false] > pr2 > [eq2, 0, true] > [div2, quot2] > [zero, plus]
p > [zero, plus]
eq2: [2,1]
PR2: [1,2]
true: []
plus: []
pr2: [1,2]
0: []
zero: []
p: []
div2: [2,1]
quot2: [2,1]
false: []
s1: [1]
IF2: [1,2]
IF(false, x, y) → PR(x, y)
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)
0 > s > QUOT2
0 > DIV1 > QUOT2
QUOT2: [2,1]
DIV1: [1]
s: []
0: []
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))