(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)

The set Q consists of the following terms:

diff(x0, x1)
cond1(true, x0, x1)
cond1(false, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIFF(x, y) → COND1(equal(x, y), x, y)
DIFF(x, y) → EQUAL(x, y)
COND1(false, x, y) → COND2(gt(x, y), x, y)
COND1(false, x, y) → GT(x, y)
COND2(true, x, y) → DIFF(x, s(y))
COND2(false, x, y) → DIFF(s(x), y)
GT(s(u), s(v)) → GT(u, v)
EQUAL(s(x), s(y)) → EQUAL(x, y)

The TRS R consists of the following rules:

diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)

The set Q consists of the following terms:

diff(x0, x1)
cond1(true, x0, x1)
cond1(false, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQUAL(s(x), s(y)) → EQUAL(x, y)

The TRS R consists of the following rules:

diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)

The set Q consists of the following terms:

diff(x0, x1)
cond1(true, x0, x1)
cond1(false, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQUAL(s(x), s(y)) → EQUAL(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQUAL(x1, x2)  =  EQUAL(x1)
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Precedence:
s1 > EQUAL1

Status:
EQUAL1: multiset
s1: multiset

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)

The set Q consists of the following terms:

diff(x0, x1)
cond1(true, x0, x1)
cond1(false, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GT(s(u), s(v)) → GT(u, v)

The TRS R consists of the following rules:

diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)

The set Q consists of the following terms:

diff(x0, x1)
cond1(true, x0, x1)
cond1(false, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GT(s(u), s(v)) → GT(u, v)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
GT(x1, x2)  =  GT(x1)
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Precedence:
s1 > GT1

Status:
GT1: multiset
s1: multiset

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)

The set Q consists of the following terms:

diff(x0, x1)
cond1(true, x0, x1)
cond1(false, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

COND1(false, x, y) → COND2(gt(x, y), x, y)
COND2(true, x, y) → DIFF(x, s(y))
DIFF(x, y) → COND1(equal(x, y), x, y)
COND2(false, x, y) → DIFF(s(x), y)

The TRS R consists of the following rules:

diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)

The set Q consists of the following terms:

diff(x0, x1)
cond1(true, x0, x1)
cond1(false, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.