0 QTRS
↳1 AAECC Innermost (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
f(true, x, y) → f(gt(x, y), x, round(s(y)))
round(0) → 0
round(s(0)) → s(s(0))
round(s(s(x))) → s(s(round(x)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
round(0) → 0
round(s(0)) → s(s(0))
round(s(s(x))) → s(s(round(x)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x, y) → f(gt(x, y), x, round(s(y)))
f(true, x, y) → f(gt(x, y), x, round(s(y)))
round(0) → 0
round(s(0)) → s(s(0))
round(s(s(x))) → s(s(round(x)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1)
round(0)
round(s(0))
round(s(s(x0)))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
F(true, x, y) → F(gt(x, y), x, round(s(y)))
F(true, x, y) → GT(x, y)
F(true, x, y) → ROUND(s(y))
ROUND(s(s(x))) → ROUND(x)
GT(s(u), s(v)) → GT(u, v)
f(true, x, y) → f(gt(x, y), x, round(s(y)))
round(0) → 0
round(s(0)) → s(s(0))
round(s(s(x))) → s(s(round(x)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1)
round(0)
round(s(0))
round(s(s(x0)))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
GT(s(u), s(v)) → GT(u, v)
f(true, x, y) → f(gt(x, y), x, round(s(y)))
round(0) → 0
round(s(0)) → s(s(0))
round(s(s(x))) → s(s(round(x)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1)
round(0)
round(s(0))
round(s(s(x0)))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GT(s(u), s(v)) → GT(u, v)
trivial
GT1: [1]
s1: multiset
f(true, x, y) → f(gt(x, y), x, round(s(y)))
round(0) → 0
round(s(0)) → s(s(0))
round(s(s(x))) → s(s(round(x)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1)
round(0)
round(s(0))
round(s(s(x0)))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ROUND(s(s(x))) → ROUND(x)
f(true, x, y) → f(gt(x, y), x, round(s(y)))
round(0) → 0
round(s(0)) → s(s(0))
round(s(s(x))) → s(s(round(x)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1)
round(0)
round(s(0))
round(s(s(x0)))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ROUND(s(s(x))) → ROUND(x)
s1 > ROUND1
ROUND1: [1]
s1: multiset
f(true, x, y) → f(gt(x, y), x, round(s(y)))
round(0) → 0
round(s(0)) → s(s(0))
round(s(s(x))) → s(s(round(x)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1)
round(0)
round(s(0))
round(s(s(x0)))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
F(true, x, y) → F(gt(x, y), x, round(s(y)))
f(true, x, y) → f(gt(x, y), x, round(s(y)))
round(0) → 0
round(s(0)) → s(s(0))
round(s(s(x))) → s(s(round(x)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1)
round(0)
round(s(0))
round(s(s(x0)))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))