0 QTRS
↳1 AAECC Innermost (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, s(y), z)
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, y, s(z))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
and(x, true) → x
and(x, false) → false
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
and(x, true) → x
and(x, false) → false
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, s(y), z)
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, y, s(z))
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, s(y), z)
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, y, s(z))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
and(x, true) → x
and(x, false) → false
f(true, x0, x1, x2)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
and(x0, true)
and(x0, false)
F(true, x, y, z) → F(and(gt(x, y), gt(x, z)), x, s(y), z)
F(true, x, y, z) → AND(gt(x, y), gt(x, z))
F(true, x, y, z) → GT(x, y)
F(true, x, y, z) → GT(x, z)
F(true, x, y, z) → F(and(gt(x, y), gt(x, z)), x, y, s(z))
GT(s(u), s(v)) → GT(u, v)
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, s(y), z)
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, y, s(z))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
and(x, true) → x
and(x, false) → false
f(true, x0, x1, x2)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
and(x0, true)
and(x0, false)
GT(s(u), s(v)) → GT(u, v)
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, s(y), z)
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, y, s(z))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
and(x, true) → x
and(x, false) → false
f(true, x0, x1, x2)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
and(x0, true)
and(x0, false)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GT(s(u), s(v)) → GT(u, v)
[GT2, s1]
s1: [1]
GT2: [1,2]
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, s(y), z)
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, y, s(z))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
and(x, true) → x
and(x, false) → false
f(true, x0, x1, x2)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
and(x0, true)
and(x0, false)
F(true, x, y, z) → F(and(gt(x, y), gt(x, z)), x, y, s(z))
F(true, x, y, z) → F(and(gt(x, y), gt(x, z)), x, s(y), z)
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, s(y), z)
f(true, x, y, z) → f(and(gt(x, y), gt(x, z)), x, y, s(z))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
and(x, true) → x
and(x, false) → false
f(true, x0, x1, x2)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
and(x0, true)
and(x0, false)