0 QTRS
↳1 AAECC Innermost (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → GT(x, plus(y, z))
F(true, x, y, z) → PLUS(y, z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
PLUS(n, s(m)) → PLUS(n, m)
GT(s(u), s(v)) → GT(u, v)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
GT(s(u), s(v)) → GT(u, v)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GT(s(u), s(v)) → GT(u, v)
plus2 > [GT1, s1, f1] > [true, 0, false]
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
PLUS(n, s(m)) → PLUS(n, m)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(n, s(m)) → PLUS(n, m)
plus2 > [s1, true, gt, false]
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))