0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)
minus(x0, x1)
cond(true, x0, x1)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))
MINUS(x, y) → COND(equal(min(x, y), y), x, y)
MINUS(x, y) → EQUAL(min(x, y), y)
MINUS(x, y) → MIN(x, y)
COND(true, x, y) → MINUS(x, s(y))
MIN(s(u), s(v)) → MIN(u, v)
EQUAL(s(x), s(y)) → EQUAL(x, y)
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)
minus(x0, x1)
cond(true, x0, x1)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))
EQUAL(s(x), s(y)) → EQUAL(x, y)
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)
minus(x0, x1)
cond(true, x0, x1)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQUAL(s(x), s(y)) → EQUAL(x, y)
trivial
EQUAL1: [1]
s1: [1]
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)
minus(x0, x1)
cond(true, x0, x1)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))
MIN(s(u), s(v)) → MIN(u, v)
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)
minus(x0, x1)
cond(true, x0, x1)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MIN(s(u), s(v)) → MIN(u, v)
trivial
MIN1: [1]
s1: [1]
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)
minus(x0, x1)
cond(true, x0, x1)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))
COND(true, x, y) → MINUS(x, s(y))
MINUS(x, y) → COND(equal(min(x, y), y), x, y)
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)
minus(x0, x1)
cond(true, x0, x1)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
equal(0, 0)
equal(s(x0), 0)
equal(0, s(x0))
equal(s(x0), s(x1))