0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
minus(x, y) → cond(min(x, y), x, y)
cond(y, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
minus(x, y) → cond(min(x, y), x, y)
cond(y, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
minus(x0, x1)
cond(x0, x1, x0)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
MINUS(x, y) → COND(min(x, y), x, y)
MINUS(x, y) → MIN(x, y)
COND(y, x, y) → MINUS(x, s(y))
MIN(s(u), s(v)) → MIN(u, v)
minus(x, y) → cond(min(x, y), x, y)
cond(y, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
minus(x0, x1)
cond(x0, x1, x0)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
MIN(s(u), s(v)) → MIN(u, v)
minus(x, y) → cond(min(x, y), x, y)
cond(y, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
minus(x0, x1)
cond(x0, x1, x0)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MIN(s(u), s(v)) → MIN(u, v)
trivial
MIN1: [1]
s1: multiset
minus(x, y) → cond(min(x, y), x, y)
cond(y, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
minus(x0, x1)
cond(x0, x1, x0)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
COND(y, x, y) → MINUS(x, s(y))
MINUS(x, y) → COND(min(x, y), x, y)
minus(x, y) → cond(min(x, y), x, y)
cond(y, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
minus(x0, x1)
cond(x0, x1, x0)
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))