0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
minus(x, y) → cond(ge(x, s(y)), x, y)
cond(false, x, y) → 0
cond(true, x, y) → s(minus(x, s(y)))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
minus(x, y) → cond(ge(x, s(y)), x, y)
cond(false, x, y) → 0
cond(true, x, y) → s(minus(x, s(y)))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
minus(x0, x1)
cond(false, x0, x1)
cond(true, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
MINUS(x, y) → COND(ge(x, s(y)), x, y)
MINUS(x, y) → GE(x, s(y))
COND(true, x, y) → MINUS(x, s(y))
GE(s(u), s(v)) → GE(u, v)
minus(x, y) → cond(ge(x, s(y)), x, y)
cond(false, x, y) → 0
cond(true, x, y) → s(minus(x, s(y)))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
minus(x0, x1)
cond(false, x0, x1)
cond(true, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
GE(s(u), s(v)) → GE(u, v)
minus(x, y) → cond(ge(x, s(y)), x, y)
cond(false, x, y) → 0
cond(true, x, y) → s(minus(x, s(y)))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
minus(x0, x1)
cond(false, x0, x1)
cond(true, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GE(s(u), s(v)) → GE(u, v)
trivial
GE1: [1]
s1: multiset
minus(x, y) → cond(ge(x, s(y)), x, y)
cond(false, x, y) → 0
cond(true, x, y) → s(minus(x, s(y)))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
minus(x0, x1)
cond(false, x0, x1)
cond(true, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
COND(true, x, y) → MINUS(x, s(y))
MINUS(x, y) → COND(ge(x, s(y)), x, y)
minus(x, y) → cond(ge(x, s(y)), x, y)
cond(false, x, y) → 0
cond(true, x, y) → s(minus(x, s(y)))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
minus(x0, x1)
cond(false, x0, x1)
cond(true, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))