(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

qsort(nil) → nil
qsort(.(x, y)) → ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
lowers(x, nil) → nil
lowers(x, .(y, z)) → if(<=(y, x), .(y, lowers(x, z)), lowers(x, z))
greaters(x, nil) → nil
greaters(x, .(y, z)) → if(<=(y, x), greaters(x, z), .(y, greaters(x, z)))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

qsort(nil) → nil
qsort(.(x, y)) → ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
lowers(x, nil) → nil
lowers(x, .(y, z)) → if(<=(y, x), .(y, lowers(x, z)), lowers(x, z))
greaters(x, nil) → nil
greaters(x, .(y, z)) → if(<=(y, x), greaters(x, z), .(y, greaters(x, z)))

The set Q consists of the following terms:

qsort(nil)
qsort(.(x0, x1))
lowers(x0, nil)
lowers(x0, .(x1, x2))
greaters(x0, nil)
greaters(x0, .(x1, x2))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QSORT(.(x, y)) → QSORT(lowers(x, y))
QSORT(.(x, y)) → LOWERS(x, y)
QSORT(.(x, y)) → QSORT(greaters(x, y))
QSORT(.(x, y)) → GREATERS(x, y)
LOWERS(x, .(y, z)) → LOWERS(x, z)
GREATERS(x, .(y, z)) → GREATERS(x, z)

The TRS R consists of the following rules:

qsort(nil) → nil
qsort(.(x, y)) → ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
lowers(x, nil) → nil
lowers(x, .(y, z)) → if(<=(y, x), .(y, lowers(x, z)), lowers(x, z))
greaters(x, nil) → nil
greaters(x, .(y, z)) → if(<=(y, x), greaters(x, z), .(y, greaters(x, z)))

The set Q consists of the following terms:

qsort(nil)
qsort(.(x0, x1))
lowers(x0, nil)
lowers(x0, .(x1, x2))
greaters(x0, nil)
greaters(x0, .(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GREATERS(x, .(y, z)) → GREATERS(x, z)

The TRS R consists of the following rules:

qsort(nil) → nil
qsort(.(x, y)) → ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
lowers(x, nil) → nil
lowers(x, .(y, z)) → if(<=(y, x), .(y, lowers(x, z)), lowers(x, z))
greaters(x, nil) → nil
greaters(x, .(y, z)) → if(<=(y, x), greaters(x, z), .(y, greaters(x, z)))

The set Q consists of the following terms:

qsort(nil)
qsort(.(x0, x1))
lowers(x0, nil)
lowers(x0, .(x1, x2))
greaters(x0, nil)
greaters(x0, .(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GREATERS(x, .(y, z)) → GREATERS(x, z)

R is empty.
The set Q consists of the following terms:

qsort(nil)
qsort(.(x0, x1))
lowers(x0, nil)
lowers(x0, .(x1, x2))
greaters(x0, nil)
greaters(x0, .(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

qsort(nil)
qsort(.(x0, x1))
lowers(x0, nil)
lowers(x0, .(x1, x2))
greaters(x0, nil)
greaters(x0, .(x1, x2))

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GREATERS(x, .(y, z)) → GREATERS(x, z)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • GREATERS(x, .(y, z)) → GREATERS(x, z)
    The graph contains the following edges 1 >= 1, 2 > 2

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOWERS(x, .(y, z)) → LOWERS(x, z)

The TRS R consists of the following rules:

qsort(nil) → nil
qsort(.(x, y)) → ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
lowers(x, nil) → nil
lowers(x, .(y, z)) → if(<=(y, x), .(y, lowers(x, z)), lowers(x, z))
greaters(x, nil) → nil
greaters(x, .(y, z)) → if(<=(y, x), greaters(x, z), .(y, greaters(x, z)))

The set Q consists of the following terms:

qsort(nil)
qsort(.(x0, x1))
lowers(x0, nil)
lowers(x0, .(x1, x2))
greaters(x0, nil)
greaters(x0, .(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOWERS(x, .(y, z)) → LOWERS(x, z)

R is empty.
The set Q consists of the following terms:

qsort(nil)
qsort(.(x0, x1))
lowers(x0, nil)
lowers(x0, .(x1, x2))
greaters(x0, nil)
greaters(x0, .(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(17) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

qsort(nil)
qsort(.(x0, x1))
lowers(x0, nil)
lowers(x0, .(x1, x2))
greaters(x0, nil)
greaters(x0, .(x1, x2))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOWERS(x, .(y, z)) → LOWERS(x, z)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LOWERS(x, .(y, z)) → LOWERS(x, z)
    The graph contains the following edges 1 >= 1, 2 > 2

(20) TRUE