(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(x, y, z), u, f(x, y, v)) → f(x, y, f(z, u, v))
f(x, y, y) → y
f(x, y, g(y)) → x
f(x, x, y) → x
f(g(x), x, y) → y
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(f(x, y, z), u, f(x, y, v)) → F(x, y, f(z, u, v))
F(f(x, y, z), u, f(x, y, v)) → F(z, u, v)
The TRS R consists of the following rules:
f(f(x, y, z), u, f(x, y, v)) → f(x, y, f(z, u, v))
f(x, y, y) → y
f(x, y, g(y)) → x
f(x, x, y) → x
f(g(x), x, y) → y
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(f(x, y, z), u, f(x, y, v)) → F(x, y, f(z, u, v))
F(f(x, y, z), u, f(x, y, v)) → F(z, u, v)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(
x1,
x2,
x3) =
F(
x1)
f(
x1,
x2,
x3) =
f(
x1,
x2,
x3)
g(
x1) =
g(
x1)
Lexicographic Path Order [LPO].
Precedence:
f3 > F1
g1 > F1
The following usable rules [FROCOS05] were oriented:
none
(4) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(f(x, y, z), u, f(x, y, v)) → f(x, y, f(z, u, v))
f(x, y, y) → y
f(x, y, g(y)) → x
f(x, x, y) → x
f(g(x), x, y) → y
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(6) TRUE