0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 PisEmptyProof (⇔)
↳6 TRUE
f(f(x, y, z), u, f(x, y, v)) → f(x, y, f(z, u, v))
f(x, y, y) → y
f(x, y, g(y)) → x
f(x, x, y) → x
f(g(x), x, y) → y
F(f(x, y, z), u, f(x, y, v)) → F(x, y, f(z, u, v))
F(f(x, y, z), u, f(x, y, v)) → F(z, u, v)
f(f(x, y, z), u, f(x, y, v)) → f(x, y, f(z, u, v))
f(x, y, y) → y
f(x, y, g(y)) → x
f(x, x, y) → x
f(g(x), x, y) → y
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(f(x, y, z), u, f(x, y, v)) → F(x, y, f(z, u, v))
F(f(x, y, z), u, f(x, y, v)) → F(z, u, v)
F2 > f2
f(g(x), x, y) → y
f(f(x, y, z), u, f(x, y, v)) → f(x, y, f(z, u, v))
f(x, y, y) → y
f(x, y, g(y)) → x
f(x, x, y) → x
f(f(x, y, z), u, f(x, y, v)) → f(x, y, f(z, u, v))
f(x, y, y) → y
f(x, y, g(y)) → x
f(x, x, y) → x
f(g(x), x, y) → y