(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

merge(x, nil) → x
merge(nil, y) → y
merge(++(x, y), ++(u, v)) → ++(x, merge(y, ++(u, v)))
merge(++(x, y), ++(u, v)) → ++(u, merge(++(x, y), v))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive Path Order [RPO].
Precedence:
merge2 > ++2
merge2 > v
u > ++2
u > v
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

merge(x, nil) → x
merge(nil, y) → y
merge(++(x, y), ++(u, v)) → ++(x, merge(y, ++(u, v)))
merge(++(x, y), ++(u, v)) → ++(u, merge(++(x, y), v))


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE