(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(x, g(y, z)) → F(x, y)
++1(x, g(y, z)) → ++1(x, y)
MEM(g(x, y), z) → MEM(x, z)
MEM(x, max(x)) → NULL(x)
MAX(g(g(g(x, y), z), u)) → MAX(g(g(x, y), z))

The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MAX(g(g(g(x, y), z), u)) → MAX(g(g(x, y), z))

The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MAX(g(g(g(x, y), z), u)) → MAX(g(g(x, y), z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MAX(x1)  =  MAX(x1)
g(x1, x2)  =  g(x1, x2)
u  =  u
f(x1, x2)  =  f(x1, x2)
nil  =  nil
++(x1, x2)  =  ++(x1, x2)
null(x1)  =  null
true  =  true
false  =  false
mem(x1, x2)  =  mem(x2)
or(x1, x2)  =  x1
=(x1, x2)  =  =
max(x1)  =  max
not(x1)  =  not
max'(x1, x2)  =  max'

Recursive path order with status [RPO].
Quasi-Precedence:
MAX1 > g2 > [u, max, not, max'] > =
MAX1 > g2 > [false, mem1] > =
f2 > g2 > [u, max, not, max'] > =
f2 > g2 > [false, mem1] > =
f2 > nil > true > =
f2 > nil > [false, mem1] > =
++2 > g2 > [u, max, not, max'] > =
++2 > g2 > [false, mem1] > =
null > true > =
null > [false, mem1] > =

Status:
MAX1: multiset
g2: multiset
u: multiset
f2: multiset
nil: multiset
++2: multiset
null: []
true: multiset
false: multiset
mem1: multiset
=: multiset
max: multiset
not: multiset
max': multiset


The following usable rules [FROCOS05] were oriented:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEM(g(x, y), z) → MEM(x, z)

The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MEM(g(x, y), z) → MEM(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MEM(x1, x2)  =  x1
g(x1, x2)  =  g(x1, x2)
f(x1, x2)  =  f(x1, x2)
nil  =  nil
++(x1, x2)  =  ++(x1, x2)
null(x1)  =  x1
true  =  true
false  =  false
mem(x1, x2)  =  mem(x1)
or(x1, x2)  =  x2
=(x1, x2)  =  =(x2)
max(x1)  =  max(x1)
not(x1)  =  not(x1)
max'(x1, x2)  =  max'
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
f2 > [g2, mem1, u] > =1 > false
f2 > [g2, mem1, u] > [max1, not1, max'] > false
f2 > [nil, true] > false
++2 > [g2, mem1, u] > =1 > false
++2 > [g2, mem1, u] > [max1, not1, max'] > false

Status:
g2: [2,1]
f2: [1,2]
nil: multiset
++2: [2,1]
true: multiset
false: multiset
mem1: [1]
=1: multiset
max1: [1]
not1: multiset
max': []
u: multiset


The following usable rules [FROCOS05] were oriented:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

++1(x, g(y, z)) → ++1(x, y)

The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


++1(x, g(y, z)) → ++1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
++1(x1, x2)  =  ++1(x2)
g(x1, x2)  =  g(x1, x2)
f(x1, x2)  =  f(x1, x2)
nil  =  nil
++(x1, x2)  =  ++(x1, x2)
null(x1)  =  x1
true  =  true
false  =  false
mem(x1, x2)  =  mem(x1)
or(x1, x2)  =  or(x1, x2)
=(x1, x2)  =  =
max(x1)  =  x1
not(x1)  =  not(x1)
max'(x1, x2)  =  max'(x1, x2)
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
f2 > [g2, nil, ++2, false, mem1, not1, max'2] > ++^11 > [or2, =]
f2 > [g2, nil, ++2, false, mem1, not1, max'2] > true > [or2, =]
u > [g2, nil, ++2, false, mem1, not1, max'2] > ++^11 > [or2, =]
u > [g2, nil, ++2, false, mem1, not1, max'2] > true > [or2, =]

Status:
++^11: multiset
g2: [2,1]
f2: [2,1]
nil: multiset
++2: [2,1]
true: multiset
false: multiset
mem1: [1]
or2: multiset
=: multiset
not1: [1]
max'2: [2,1]
u: multiset


The following usable rules [FROCOS05] were oriented:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(x, g(y, z)) → F(x, y)

The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(x, g(y, z)) → F(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2)  =  F(x2)
g(x1, x2)  =  g(x1, x2)
f(x1, x2)  =  f(x1, x2)
nil  =  nil
++(x1, x2)  =  ++(x1, x2)
null(x1)  =  x1
true  =  true
false  =  false
mem(x1, x2)  =  mem(x1, x2)
or(x1, x2)  =  or
=(x1, x2)  =  =(x1, x2)
max(x1)  =  x1
not(x1)  =  x1
max'(x1, x2)  =  x1
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
[f2, nil] > [g2, or] > F1
[f2, nil] > [g2, or] > false
[f2, nil] > [g2, or] > mem2
[f2, nil] > [g2, or] > =2
[f2, nil] > true
++2 > [g2, or] > F1
++2 > [g2, or] > false
++2 > [g2, or] > mem2
++2 > [g2, or] > =2
u > [g2, or] > F1
u > [g2, or] > false
u > [g2, or] > mem2
u > [g2, or] > =2

Status:
F1: multiset
g2: multiset
f2: [1,2]
nil: multiset
++2: multiset
true: multiset
false: multiset
mem2: multiset
or: multiset
=2: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE