(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(x, g(y, z)) → F(x, y)
++1(x, g(y, z)) → ++1(x, y)
MEM(g(x, y), z) → MEM(x, z)
MEM(x, max(x)) → NULL(x)
MAX(g(g(g(x, y), z), u)) → MAX(g(g(x, y), z))

The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MAX(g(g(g(x, y), z), u)) → MAX(g(g(x, y), z))

The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MAX(g(g(g(x, y), z), u)) → MAX(g(g(x, y), z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MAX(x1)  =  x1
g(x1, x2)  =  g(x1, x2)
u  =  u
f(x1, x2)  =  f(x1, x2)
nil  =  nil
++(x1, x2)  =  ++(x1, x2)
null(x1)  =  null(x1)
true  =  true
false  =  false
mem(x1, x2)  =  mem(x1)
or(x1, x2)  =  or(x2)
=(x1, x2)  =  =(x1, x2)
max(x1)  =  x1
not(x1)  =  x1
max'(x1, x2)  =  x2

Lexicographic path order with status [LPO].
Quasi-Precedence:
u > [g2, ++2] > or1
f2 > [g2, ++2] > or1
f2 > nil
[null1, false, mem1] > true
[null1, false, mem1] > or1

Status:
++2: [2,1]
null1: [1]
g2: [2,1]
u: []
f2: [2,1]
=2: [1,2]
or1: [1]
true: []
false: []
mem1: [1]
nil: []


The following usable rules [FROCOS05] were oriented:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEM(g(x, y), z) → MEM(x, z)

The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MEM(g(x, y), z) → MEM(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MEM(x1, x2)  =  MEM(x1, x2)
g(x1, x2)  =  g(x1, x2)
f(x1, x2)  =  f(x1, x2)
nil  =  nil
++(x1, x2)  =  ++(x1, x2)
null(x1)  =  null
true  =  true
false  =  false
mem(x1, x2)  =  mem
or(x1, x2)  =  or
=(x1, x2)  =  =
max(x1)  =  max(x1)
not(x1)  =  not
max'(x1, x2)  =  max'(x1, x2)
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
f2 > g2 > false
++2 > g2 > false
[mem, not] > [null, true] > false
[mem, not] > or
[mem, not] > =
max1 > u > [nil, max'2] > g2 > false
max1 > u > [nil, max'2] > [null, true] > false

Status:
++2: [1,2]
=: []
MEM2: [2,1]
or: []
f2: [1,2]
true: []
not: []
mem: []
null: []
g2: [2,1]
max'2: [2,1]
u: []
max1: [1]
false: []
nil: []


The following usable rules [FROCOS05] were oriented:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

++1(x, g(y, z)) → ++1(x, y)

The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


++1(x, g(y, z)) → ++1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
++1(x1, x2)  =  x2
g(x1, x2)  =  g(x1, x2)
f(x1, x2)  =  f(x1, x2)
nil  =  nil
++(x1, x2)  =  ++(x1, x2)
null(x1)  =  null
true  =  true
false  =  false
mem(x1, x2)  =  mem
or(x1, x2)  =  or
=(x1, x2)  =  =
max(x1)  =  max(x1)
not(x1)  =  not
max'(x1, x2)  =  max'(x1, x2)
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
f2 > g2 > false
++2 > g2 > false
[mem, not] > [null, true] > false
[mem, not] > or
[mem, not] > =
max1 > u > [nil, max'2] > g2 > false
max1 > u > [nil, max'2] > [null, true] > false

Status:
++2: [1,2]
=: []
or: []
f2: [1,2]
true: []
not: []
mem: []
null: []
max'2: [2,1]
g2: [2,1]
u: []
max1: [1]
false: []
nil: []


The following usable rules [FROCOS05] were oriented:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(x, g(y, z)) → F(x, y)

The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(x, g(y, z)) → F(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2)  =  x2
g(x1, x2)  =  g(x1, x2)
f(x1, x2)  =  f(x1, x2)
nil  =  nil
++(x1, x2)  =  ++(x1, x2)
null(x1)  =  null(x1)
true  =  true
false  =  false
mem(x1, x2)  =  mem(x1, x2)
or(x1, x2)  =  x2
=(x1, x2)  =  =(x1, x2)
max(x1)  =  max(x1)
not(x1)  =  not
max'(x1, x2)  =  max'(x1, x2)
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
f2 > g2 > max1 > u
f2 > g2 > max'2
nil > g2 > max1 > u
nil > g2 > max'2
nil > [null1, false] > true
++2 > g2 > max1 > u
++2 > g2 > max'2
[mem2, not]

Status:
null1: [1]
++2: [2,1]
=2: [1,2]
f2: [1,2]
true: []
not: []
mem2: [2,1]
max'2: [2,1]
g2: [2,1]
u: []
max1: [1]
false: []
nil: []


The following usable rules [FROCOS05] were oriented:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE