(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT(0, s(y)) → INT(s(0), s(y))
INT(s(x), s(y)) → INT_LIST(int(x, y))
INT(s(x), s(y)) → INT(x, y)
INT_LIST(.(x, y)) → INT_LIST(y)

The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT_LIST(.(x, y)) → INT_LIST(y)

The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT(s(x), s(y)) → INT(x, y)
INT(0, s(y)) → INT(s(0), s(y))

The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INT(s(x), s(y)) → INT(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INT(x1, x2)  =  INT(x2)
s(x1)  =  s(x1)
0  =  0
int(x1, x2)  =  int
.(x1, x2)  =  x2
nil  =  nil
int_list(x1)  =  int_list

Recursive Path Order [RPO].
Precedence:
[INT1, s1, 0, int, intlist] > nil


The following usable rules [FROCOS05] were oriented:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT(0, s(y)) → INT(s(0), s(y))

The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(11) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(12) TRUE