(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
rev(nil) → nil
rev(++(x, y)) → ++(rev1(x, y), rev2(x, y))
rev1(x, nil) → x
rev1(x, ++(y, z)) → rev1(y, z)
rev2(x, nil) → nil
rev2(x, ++(y, z)) → rev(++(x, rev(rev2(y, z))))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
rev(nil) → nil
rev(++(x, y)) → ++(rev1(x, y), rev2(x, y))
rev1(x, nil) → x
rev1(x, ++(y, z)) → rev1(y, z)
rev2(x, nil) → nil
rev2(x, ++(y, z)) → rev(++(x, rev(rev2(y, z))))
The set Q consists of the following terms:
rev(nil)
rev(++(x0, x1))
rev1(x0, nil)
rev1(x0, ++(x1, x2))
rev2(x0, nil)
rev2(x0, ++(x1, x2))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV(++(x, y)) → REV1(x, y)
REV(++(x, y)) → REV2(x, y)
REV1(x, ++(y, z)) → REV1(y, z)
REV2(x, ++(y, z)) → REV(++(x, rev(rev2(y, z))))
REV2(x, ++(y, z)) → REV(rev2(y, z))
REV2(x, ++(y, z)) → REV2(y, z)
The TRS R consists of the following rules:
rev(nil) → nil
rev(++(x, y)) → ++(rev1(x, y), rev2(x, y))
rev1(x, nil) → x
rev1(x, ++(y, z)) → rev1(y, z)
rev2(x, nil) → nil
rev2(x, ++(y, z)) → rev(++(x, rev(rev2(y, z))))
The set Q consists of the following terms:
rev(nil)
rev(++(x0, x1))
rev1(x0, nil)
rev1(x0, ++(x1, x2))
rev2(x0, nil)
rev2(x0, ++(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV1(x, ++(y, z)) → REV1(y, z)
The TRS R consists of the following rules:
rev(nil) → nil
rev(++(x, y)) → ++(rev1(x, y), rev2(x, y))
rev1(x, nil) → x
rev1(x, ++(y, z)) → rev1(y, z)
rev2(x, nil) → nil
rev2(x, ++(y, z)) → rev(++(x, rev(rev2(y, z))))
The set Q consists of the following terms:
rev(nil)
rev(++(x0, x1))
rev1(x0, nil)
rev1(x0, ++(x1, x2))
rev2(x0, nil)
rev2(x0, ++(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV(++(x, y)) → REV2(x, y)
REV2(x, ++(y, z)) → REV(++(x, rev(rev2(y, z))))
REV2(x, ++(y, z)) → REV(rev2(y, z))
REV2(x, ++(y, z)) → REV2(y, z)
The TRS R consists of the following rules:
rev(nil) → nil
rev(++(x, y)) → ++(rev1(x, y), rev2(x, y))
rev1(x, nil) → x
rev1(x, ++(y, z)) → rev1(y, z)
rev2(x, nil) → nil
rev2(x, ++(y, z)) → rev(++(x, rev(rev2(y, z))))
The set Q consists of the following terms:
rev(nil)
rev(++(x0, x1))
rev1(x0, nil)
rev1(x0, ++(x1, x2))
rev2(x0, nil)
rev2(x0, ++(x1, x2))
We have to consider all minimal (P,Q,R)-chains.