(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) → if(x, y, z)
if(x, y, if(x, y, z)) → if(x, y, z)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(if(x, y, z), u, v) → IF(x, if(y, u, v), if(z, u, v))
IF(if(x, y, z), u, v) → IF(y, u, v)
IF(if(x, y, z), u, v) → IF(z, u, v)

The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) → if(x, y, z)
if(x, y, if(x, y, z)) → if(x, y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(if(x, y, z), u, v) → IF(x, if(y, u, v), if(z, u, v))
IF(if(x, y, z), u, v) → IF(y, u, v)
IF(if(x, y, z), u, v) → IF(z, u, v)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  IF(x1)
if(x1, x2, x3)  =  if(x1, x2, x3)
true  =  true
false  =  false

Lexicographic path order with status [LPO].
Precedence:
trivial

Status:
if3: [3,2,1]
true: []
false: []
IF1: [1]

The following usable rules [FROCOS05] were oriented: none

(4) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) → if(x, y, z)
if(x, y, if(x, y, z)) → if(x, y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(6) TRUE