(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

not(and(x, y)) → or(not(x), not(y))
not(or(x, y)) → and(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive Path Order [RPO].
Precedence:
not1 > and2 > or2

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

not(and(x, y)) → or(not(x), not(y))
not(or(x, y)) → and(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE