(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fac(s(x)) → *(fac(p(s(x))), s(x))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fac(s(x)) → *(fac(p(s(x))), s(x))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

fac(s(x0))
p(s(0))
p(s(s(x0)))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x)) → FAC(p(s(x)))
FAC(s(x)) → P(s(x))
P(s(s(x))) → P(s(x))

The TRS R consists of the following rules:

fac(s(x)) → *(fac(p(s(x))), s(x))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

fac(s(x0))
p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(s(s(x))) → P(s(x))

The TRS R consists of the following rules:

fac(s(x)) → *(fac(p(s(x))), s(x))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

fac(s(x0))
p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(s(s(x))) → P(s(x))

R is empty.
The set Q consists of the following terms:

fac(s(x0))
p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

fac(s(x0))
p(s(0))
p(s(s(x0)))

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(s(s(x))) → P(s(x))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • P(s(s(x))) → P(s(x))
    The graph contains the following edges 1 > 1

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x)) → FAC(p(s(x)))

The TRS R consists of the following rules:

fac(s(x)) → *(fac(p(s(x))), s(x))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

fac(s(x0))
p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x)) → FAC(p(s(x)))

The TRS R consists of the following rules:

p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

fac(s(x0))
p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

(17) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

fac(s(x0))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x)) → FAC(p(s(x)))

The TRS R consists of the following rules:

p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

(19) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

p(s(0)) → 0

Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(FAC(x1)) = x1   
POL(p(x1)) = x1   
POL(s(x1)) = 1 + x1   

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x)) → FAC(p(s(x)))

The TRS R consists of the following rules:

p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FAC(s(x)) → FAC(p(s(x)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(FAC(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(s(x1)) =
/1\
\0/
+
/10\
\10/
·x1

POL(p(x1)) =
/0\
\1/
+
/01\
\01/
·x1

The following usable rules [FROCOS05] were oriented:

p(s(s(x))) → s(p(s(x)))

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(s(s(x))) → s(p(s(x)))

The set Q consists of the following terms:

p(s(0))
p(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE