(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0) → s(0)
f(s(0)) → s(s(0))
f(s(0)) → *(s(s(0)), f(0))
f(+(x, s(0))) → +(s(s(0)), f(x))
f(+(x, y)) → *(f(x), f(y))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(0)) → F(0)
F(+(x, s(0))) → F(x)
F(+(x, y)) → F(x)
F(+(x, y)) → F(y)
The TRS R consists of the following rules:
f(0) → s(0)
f(s(0)) → s(s(0))
f(s(0)) → *(s(s(0)), f(0))
f(+(x, s(0))) → +(s(s(0)), f(x))
f(+(x, y)) → *(f(x), f(y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(+(x, y)) → F(x)
F(+(x, s(0))) → F(x)
F(+(x, y)) → F(y)
The TRS R consists of the following rules:
f(0) → s(0)
f(s(0)) → s(s(0))
f(s(0)) → *(s(s(0)), f(0))
f(+(x, s(0))) → +(s(s(0)), f(x))
f(+(x, y)) → *(f(x), f(y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(+(x, y)) → F(x)
F(+(x, s(0))) → F(x)
F(+(x, y)) → F(y)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
0 > [F1, +2, s1]
The following usable rules [FROCOS05] were oriented:
none
(6) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(0) → s(0)
f(s(0)) → s(s(0))
f(s(0)) → *(s(s(0)), f(0))
f(+(x, s(0))) → +(s(s(0)), f(x))
f(+(x, y)) → *(f(x), f(y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(8) TRUE