(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(x, 0) → x
+(x, i(x)) → 0
+(+(x, y), z) → +(x, +(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(x, y), z) → +(*(x, z), *(y, z))
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Precedence:
i1 > 0
*2 > +2
Status:
i1: multiset
*2: multiset
0: multiset
+2: [1,2]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
+(x, 0) → x
+(x, i(x)) → 0
+(+(x, y), z) → +(x, +(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(x, y), z) → +(*(x, z), *(y, z))
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE