(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic path order with status [LPO].
Precedence:
*2 > minus1 > 0 > +2
1 > +2
Status:
minus1: [1]
*2: [1,2]
0: []
1: []
+2: [1,2]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE