(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(j(x, y), y) → G(f(x, k(y)))
F(j(x, y), y) → F(x, k(y))
F(j(x, y), y) → K(y)
F(x, h1(y, z)) → H2(0, x, h1(y, z))
G(h2(x, y, h1(z, u))) → H2(s(x), y, h1(z, u))
H2(x, j(y, h1(z, u)), h1(z, u)) → H2(s(x), y, h1(s(z), u))

The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

H2(x, j(y, h1(z, u)), h1(z, u)) → H2(s(x), y, h1(s(z), u))

The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


H2(x, j(y, h1(z, u)), h1(z, u)) → H2(s(x), y, h1(s(z), u))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
H2(x1, x2, x3)  =  H2(x1, x2)
j(x1, x2)  =  j(x1, x2)
h1(x1, x2)  =  h1(x2)
s(x1)  =  s(x1)
f(x1, x2)  =  f(x1, x2)
g(x1)  =  g(x1)
k(x1)  =  x1
h2(x1, x2, x3)  =  x3
0  =  0
i(x1)  =  i(x1)
h(x1)  =  h(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
H22 > h11 > s1
[j2, f2, g1] > h11 > s1
[j2, f2, g1] > 0 > s1
i1 > s1
h1 > h11 > s1

Status:
H22: [2,1]
j2: multiset
h11: multiset
s1: [1]
f2: multiset
g1: multiset
0: multiset
i1: multiset
h1: multiset


The following usable rules [FROCOS05] were oriented:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(j(x, y), y) → F(x, k(y))

The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(j(x, y), y) → F(x, k(y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2)  =  F(x1, x2)
j(x1, x2)  =  j(x1, x2)
k(x1)  =  k(x1)
f(x1, x2)  =  f(x1, x2)
g(x1)  =  g(x1)
h1(x1, x2)  =  x2
h2(x1, x2, x3)  =  x3
0  =  0
s(x1)  =  s
i(x1)  =  x1
h(x1)  =  h(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
F2 > k1 > f2
[j2, s] > k1 > f2
[j2, s] > g1 > f2
0 > f2
h1 > f2

Status:
F2: multiset
j2: [1,2]
k1: [1]
f2: multiset
g1: multiset
0: multiset
s: multiset
h1: multiset


The following usable rules [FROCOS05] were oriented:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE