(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
d(x) → e(u(x))
d(u(x)) → c(x)
c(u(x)) → b(x)
v(e(x)) → x
b(u(x)) → a(e(x))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
D(u(x)) → C(x)
C(u(x)) → B(x)
The TRS R consists of the following rules:
d(x) → e(u(x))
d(u(x)) → c(x)
c(u(x)) → b(x)
v(e(x)) → x
b(u(x)) → a(e(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(4) TRUE