(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic path order with status [LPO].
Quasi-Precedence:
true > [or2, union2]
mem2 > false > [or2, union2]
mem2 > [set1, =2] > [or2, union2]
nil > [or2, union2]
Status:
=2: [2,1]
true: []
or2: [2,1]
false: []
union2: [2,1]
set1: [1]
nil: []
mem2: [2,1]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE