(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Precedence:
nil > =2
set1 > =2
union2 > mem2 > or2 > true > =2
union2 > mem2 > false > =2
Status:
=2: multiset
true: multiset
or2: multiset
false: multiset
union2: multiset
set1: multiset
nil: multiset
mem2: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE