(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

rev(nil) → nil
rev(.(x, y)) → ++(rev(y), .(x, nil))
car(.(x, y)) → x
cdr(.(x, y)) → y
null(nil) → true
null(.(x, y)) → false
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Precedence:
rev1 > nil
rev1 > ++2 > .2
null1 > true
null1 > false

Status:
++2: multiset
null1: multiset
car1: multiset
cdr1: multiset
true: multiset
false: multiset
.2: multiset
rev1: multiset
nil: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

rev(nil) → nil
rev(.(x, y)) → ++(rev(y), .(x, nil))
car(.(x, y)) → x
cdr(.(x, y)) → y
null(nil) → true
null(.(x, y)) → false
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE