(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

not(x) → if(x, false, true)
and(x, y) → if(x, y, false)
or(x, y) → if(x, true, y)
implies(x, y) → if(x, y, true)
=(x, x) → true
=(x, y) → if(x, y, not(y))
if(true, x, y) → x
if(false, x, y) → y
if(x, x, if(x, false, true)) → true
=(x, y) → if(x, y, if(y, false, true))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
[not1, =2] > [if3, false, true]
and2 > [if3, false, true]
or2 > [if3, false, true]
implies2 > [if3, false, true]

Status:
not1: multiset
if3: [3,1,2]
false: multiset
true: multiset
and2: multiset
or2: multiset
implies2: multiset
=2: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

not(x) → if(x, false, true)
and(x, y) → if(x, y, false)
or(x, y) → if(x, true, y)
implies(x, y) → if(x, y, true)
=(x, x) → true
=(x, y) → if(x, y, not(y))
if(true, x, y) → x
if(false, x, y) → y
if(x, x, if(x, false, true)) → true
=(x, y) → if(x, y, if(y, false, true))


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE