(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

prime(0) → false
prime(s(0)) → false
prime(s(s(x))) → prime1(s(s(x)), s(x))
prime1(x, 0) → false
prime1(x, s(0)) → true
prime1(x, s(s(y))) → and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) → =(rem(x, y), 0)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive Path Order [RPO].
Precedence:
prime1 > [false, s1, prime12] > true > =2
prime1 > [false, s1, prime12] > and2 > =2
prime1 > [false, s1, prime12] > not1 > =2
prime1 > [false, s1, prime12] > divp2 > 0 > =2
prime1 > [false, s1, prime12] > divp2 > rem2 > =2

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

prime(0) → false
prime(s(0)) → false
prime(s(s(x))) → prime1(s(s(x)), s(x))
prime1(x, 0) → false
prime1(x, s(0)) → true
prime1(x, s(s(y))) → and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) → =(rem(x, y), 0)


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE