(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(0) → 0
f(s(0)) → s(0)
f(s(s(x))) → p(h(g(x)))
g(0) → pair(s(0), s(0))
g(s(x)) → h(g(x))
h(x) → pair(+(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
f(s(s(x))) → +(p(g(x)), q(g(x)))
g(s(x)) → pair(+(p(g(x)), q(g(x))), p(g(x)))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Precedence:
f1 > 0 > s1 > pair2 > q1
f1 > g1 > h1 > p1 > q1
f1 > g1 > h1 > +2 > s1 > pair2 > q1

Status:
f1: multiset
q1: multiset
g1: multiset
h1: multiset
pair2: multiset
s1: multiset
p1: multiset
0: multiset
+2: [1,2]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

f(0) → 0
f(s(0)) → s(0)
f(s(s(x))) → p(h(g(x)))
g(0) → pair(s(0), s(0))
g(s(x)) → h(g(x))
h(x) → pair(+(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
f(s(s(x))) → +(p(g(x)), q(g(x)))
g(s(x)) → pair(+(p(g(x)), q(g(x))), p(g(x)))


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE