0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
↳18 QDPOrderProof (⇔)
↳19 QDP
↳20 PisEmptyProof (⇔)
↳21 TRUE
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x0, 0)
exp(x0, s(x1))
*(0, x0)
*(s(x0), x1)
-(0, x0)
-(x0, 0)
-(s(x0), s(x1))
EXP(x, s(y)) → *1(x, exp(x, y))
EXP(x, s(y)) → EXP(x, y)
*1(s(x), y) → *1(x, y)
-1(s(x), s(y)) → -1(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x0, 0)
exp(x0, s(x1))
*(0, x0)
*(s(x0), x1)
-(0, x0)
-(x0, 0)
-(s(x0), s(x1))
-1(s(x), s(y)) → -1(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x0, 0)
exp(x0, s(x1))
*(0, x0)
*(s(x0), x1)
-(0, x0)
-(x0, 0)
-(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-1(s(x), s(y)) → -1(x, y)
exp > s1
exp > * > 0
exp > * > +
trivial
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x0, 0)
exp(x0, s(x1))
*(0, x0)
*(s(x0), x1)
-(0, x0)
-(x0, 0)
-(s(x0), s(x1))
*1(s(x), y) → *1(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x0, 0)
exp(x0, s(x1))
*(0, x0)
*(s(x0), x1)
-(0, x0)
-(x0, 0)
-(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*1(s(x), y) → *1(x, y)
exp > s1
exp > * > 0
exp > * > +
trivial
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x0, 0)
exp(x0, s(x1))
*(0, x0)
*(s(x0), x1)
-(0, x0)
-(x0, 0)
-(s(x0), s(x1))
EXP(x, s(y)) → EXP(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x0, 0)
exp(x0, s(x1))
*(0, x0)
*(s(x0), x1)
-(0, x0)
-(x0, 0)
-(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EXP(x, s(y)) → EXP(x, y)
exp > s1
exp > * > 0
exp > * > +
trivial
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x0, 0)
exp(x0, s(x1))
*(0, x0)
*(s(x0), x1)
-(0, x0)
-(x0, 0)
-(s(x0), s(x1))