(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sqr(s(x)), sum(x))
sqr(x) → *(x, x)
sum(s(x)) → +(*(s(x), s(x)), sum(x))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sqr(s(x)), sum(x))
sqr(x) → *(x, x)
sum(s(x)) → +(*(s(x), s(x)), sum(x))

The set Q consists of the following terms:

sum(0)
sum(s(x0))
sqr(x0)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(s(x)) → SQR(s(x))
SUM(s(x)) → SUM(x)

The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sqr(s(x)), sum(x))
sqr(x) → *(x, x)
sum(s(x)) → +(*(s(x), s(x)), sum(x))

The set Q consists of the following terms:

sum(0)
sum(s(x0))
sqr(x0)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(s(x)) → SUM(x)

The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sqr(s(x)), sum(x))
sqr(x) → *(x, x)
sum(s(x)) → +(*(s(x), s(x)), sum(x))

The set Q consists of the following terms:

sum(0)
sum(s(x0))
sqr(x0)

We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(s(x)) → SUM(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
s1 > SUM1


The following usable rules [FROCOS05] were oriented: none

(8) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sqr(s(x)), sum(x))
sqr(x) → *(x, x)
sum(s(x)) → +(*(s(x), s(x)), sum(x))

The set Q consists of the following terms:

sum(0)
sum(s(x0))
sqr(x0)

We have to consider all minimal (P,Q,R)-chains.

(9) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(10) TRUE