(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
sum1 > 0
sum1 > [s1, +2]
sum11 > 0
sum11 > [s1, +2]

Status:
sum1: multiset
s1: multiset
sum11: multiset
0: multiset
+2: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE