0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
f(0)
f(s(x0))
g(0, x0)
g(s(x0), x1)
+(x0, 0)
+(x0, s(x1))
F(s(x)) → G(x, s(x))
G(s(x), y) → G(x, +(y, s(x)))
G(s(x), y) → +1(y, s(x))
+1(x, s(y)) → +1(x, y)
G(s(x), y) → G(x, s(+(y, x)))
G(s(x), y) → +1(y, x)
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
f(0)
f(s(x0))
g(0, x0)
g(s(x0), x1)
+(x0, 0)
+(x0, s(x1))
+1(x, s(y)) → +1(x, y)
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
f(0)
f(s(x0))
g(0, x0)
g(s(x0), x1)
+(x0, 0)
+(x0, s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(x, s(y)) → +1(x, y)
[+^12, s1]
+^12: [2,1]
s1: [1]
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
f(0)
f(s(x0))
g(0, x0)
g(s(x0), x1)
+(x0, 0)
+(x0, s(x1))
G(s(x), y) → G(x, s(+(y, x)))
G(s(x), y) → G(x, +(y, s(x)))
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
f(0)
f(s(x0))
g(0, x0)
g(s(x0), x1)
+(x0, 0)
+(x0, s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G(s(x), y) → G(x, s(+(y, x)))
G(s(x), y) → G(x, +(y, s(x)))
G2 > +2 > s1
0 > s1
G2: [1,2]
s1: [1]
+2: [2,1]
0: []
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
f(0)
f(s(x0))
g(0, x0)
g(s(x0), x1)
+(x0, 0)
+(x0, s(x1))