(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(f(x))
g(x) → +(x, s(x))
f(s(x)) → +(f(x), s(f(x)))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(f(x))
g(x) → +(x, s(x))
f(s(x)) → +(f(x), s(f(x)))
The set Q consists of the following terms:
f(0)
f(s(x0))
g(x0)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x)) → G(f(x))
F(s(x)) → F(x)
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(f(x))
g(x) → +(x, s(x))
f(s(x)) → +(f(x), s(f(x)))
The set Q consists of the following terms:
f(0)
f(s(x0))
g(x0)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x)) → F(x)
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(f(x))
g(x) → +(x, s(x))
f(s(x)) → +(f(x), s(f(x)))
The set Q consists of the following terms:
f(0)
f(s(x0))
g(x0)
We have to consider all minimal (P,Q,R)-chains.
(7) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(s(x)) → F(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(
x1) =
x1
s(
x1) =
s(
x1)
f(
x1) =
f(
x1)
0 =
0
1 =
1
g(
x1) =
g(
x1)
+(
x1,
x2) =
+
Lexicographic Path Order [LPO].
Precedence:
[f1, 0, 1] > s1 > [g1, +]
The following usable rules [FROCOS05] were oriented:
f(0) → 1
f(s(x)) → g(f(x))
g(x) → +(x, s(x))
f(s(x)) → +(f(x), s(f(x)))
(8) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(f(x))
g(x) → +(x, s(x))
f(s(x)) → +(f(x), s(f(x)))
The set Q consists of the following terms:
f(0)
f(s(x0))
g(x0)
We have to consider all minimal (P,Q,R)-chains.
(9) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(10) TRUE